30 research outputs found
Main nutrient patterns and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition study.
BACKGROUND: Much of the current literature on diet-colorectal cancer (CRC) associations focused on studies of single foods/nutrients, whereas less is known about nutrient patterns. We investigated the association between major nutrient patterns and CRC risk in participants of the European Prospective Investigation into Cancer and Nutrition (EPIC) study. METHODS: Among 477 312 participants, intakes of 23 nutrients were estimated from validated dietary questionnaires. Using results from a previous principal component (PC) analysis, four major nutrient patterns were identified. Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed for the association of each of the four patterns and CRC incidence using multivariate Cox proportional hazards models with adjustment for established CRC risk factors. RESULTS: During an average of 11 years of follow-up, 4517 incident cases of CRC were documented. A nutrient pattern characterised by high intakes of vitamins and minerals was inversely associated with CRC (HR per 1 s.d.=0.94, 95% CI: 0.92-0.98) as was a pattern characterised by total protein, riboflavin, phosphorus and calcium (HR (1 s.d.)=0.96, 95% CI: 0.93-0.99). The remaining two patterns were not significantly associated with CRC risk. CONCLUSIONS: Analysing nutrient patterns may improve our understanding of how groups of nutrients relate to CRC
Discovery of common and rare genetic risk variants for colorectal cancer.
To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 × 10-8, bringing the number of known independent signals for CRC to ~100. New signals implicate lower-frequency variants, Krüppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.Goncalo R Abecasis has received compensation from 23andMe and Helix. He is currently an employee of Regeneron Pharmaceuticals. Heather Hampel performs collaborative research with Ambry Genetics, InVitae Genetics, and Myriad Genetic Laboratories, Inc., is on the scientific advisory board for InVitae Genetics and Genome Medical, and has stock in Genome Medical. Rachel Pearlman has participated in collaborative funded research with Myriad Genetics Laboratories and Invitae Genetics but has no financial competitive interest
Genetic variation in the ADIPOQ gene, adiponectin concentrations and risk of colorectal cancer: a Mendelian Randomization analysis using data from three large cohort studies
Higher levels of circulating adiponectin have been related to lower risk of colorectal cancer in several prospective cohort studies, but it remains unclear whether this association may be causal. We aimed to improve causal inference in a Mendelian Randomization meta-analysis using nested case–control studies of the European Prospective Investigation into Cancer and Nutrition (EPIC, 623 cases, 623 matched controls), the Health Professionals Follow-up Study (HPFS, 231 cases, 230 controls) and the Nurses’ Health Study (NHS, 399 cases, 774 controls) with available data on pre-diagnostic adiponectin concentrations and selected single nucleotide polymorphisms in the ADIPOQ gene. We created an ADIPOQ allele score that explained approximately 3% of the interindividual variation in adiponectin concentrations. The ADIPOQ allele score was not associated with risk of colorectal cancer in logistic regression analyses (pooled OR per score-unit unit 0.97, 95% CI 0.91, 1.04). Genetically determined twofold higher adiponectin was not significantly associated with risk of colorectal cancer using the ADIPOQ allele score as instrumental variable (pooled OR 0.73, 95% CI 0.40, 1.34). In a summary instrumental variable analysis (based on previously published data) with higher statistical power, no association between genetically determined twofold higher adiponectin and risk of colorectal cancer was observed (0.99, 95% CI 0.93, 1.06 in women and 0.94, 95% CI 0.88, 1.01 in men). Thus, our study does not support a causal effect of circulating adiponectin on colorectal cancer risk. Due to the limited genetic determination of adiponectin, larger Mendelian Randomization studies are necessary to clarify whether adiponectin is causally related to lower risk of colorectal cancer
Circulating bilirubin levels and risk of colorectal cancer: serological and Mendelian randomization analyses
Abstract: Background: Bilirubin, a byproduct of hemoglobin breakdown and purported anti-oxidant, is thought to be cancer preventive. We conducted complementary serological and Mendelian randomization (MR) analyses to investigate whether alterations in circulating levels of bilirubin are associated with risk of colorectal cancer (CRC). We decided a priori to perform analyses separately in men and women based on suggestive evidence that associations may differ by sex. Methods: In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition (EPIC), pre-diagnostic unconjugated bilirubin (UCB, the main component of total bilirubin) concentrations were measured by high-performance liquid chromatography in plasma samples of 1386 CRC cases and their individually matched controls. Additionally, 115 single-nucleotide polymorphisms (SNPs) robustly associated (P < 5 × 10−8) with circulating total bilirubin were instrumented in a 2-sample MR to test for a potential causal effect of bilirubin on CRC risk in 52,775 CRC cases and 45,940 matched controls in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colon Cancer Family Registry (CCFR), and the Colorectal Transdisciplinary (CORECT) study. Results: The associations between circulating UCB levels and CRC risk differed by sex (Pheterogeneity = 0.008). Among men, higher levels of UCB were positively associated with CRC risk (odds ratio [OR] = 1.19, 95% confidence interval [CI] = 1.04–1.36; per 1-SD increment of log-UCB). In women, an inverse association was observed (OR = 0.86 (0.76–0.97)). In the MR analysis of the main UGT1A1 SNP (rs6431625), genetically predicted higher levels of total bilirubin were associated with a 7% increase in CRC risk in men (OR = 1.07 (1.02–1.12); P = 0.006; per 1-SD increment of total bilirubin), while there was no association in women (OR = 1.01 (0.96–1.06); P = 0.73). Raised bilirubin levels, predicted by instrumental variables excluding rs6431625, were suggestive of an inverse association with CRC in men, but not in women. These differences by sex did not reach formal statistical significance (Pheterogeneity ≥ 0.2). Conclusions: Additional insight into the relationship between circulating bilirubin and CRC is needed in order to conclude on a potential causal role of bilirubin in CRC development
The inflammatory potential of diet in determining cancer risk : a prospective investigation of two dietary pattern scores
PURPOSE: Inflammation-related mechanisms may contribute to the link between diet and cancer. We sought to investigate the inflammatory impact of diet on cancer risk using the Dietary inflammatory index (DII) and an adapted Mediterranean diet score (MDS). METHODS: This population-based, prospective cohort study used self-reported dietary data from the Västerbotten Intervention Programme, including 100,881 participants, of whom 35,393 had repeated measures. Associations between dietary patterns and cancer risk were evaluated using Cox proportional hazards regression. We also used restricted cubic splines to test for potential non-linear associations. RESULTS: A total of 9,250 incident cancer cases were diagnosed during a median follow-up of 15 years. The two dietary patterns were moderately correlated to each other and had similar associations with cancer risk, predominantly lung cancer in men (DII per tertile decrease: Hazard ratio (HR) 0.81 (0.66-0.99), MDS per tertile increase: HR 0.86 (0.72-1.03)), and gastric cancer in men (DII: 0.73 (0.53-0.99), MDS: 0.73 (0.56-0.96)). Associations were, in general, found to be linear. We found no longitudinal association between 10-year change in diet and cancer risk. CONCLUSION: We confirm small, but consistent and statistically significant associations between a more anti-inflammatory or healthier diet and reduced risk of cancer, including a lower risk of lung and gastric cancer in men. The dietary indexes produced similar associations with respect to the risk of cancer
One-carbon metabolism biomarkers and genetic variants in relation to colorectal cancer risk by KRAS and BRAF mutation status
Disturbances in one-carbon metabolism, intracellular reactions involved in nucleotide synthesis and methylation, likely increase the risk of colorectal cancer (CRC). However, results have been inconsistent. To explore whether this inconsistency could be explained by intertumoral heterogeneity, we evaluated a comprehensive panel of one-carbon metabolism biomarkers and some single nucleotide polymorphisms (SNPs) in relation to the risk of molecular subtypes of CRC defined by mutations in the KRAS and BRAF oncogenes. This nested case-control study included 488 CRC cases and 947 matched controls from two population-based cohorts in the Northern Sweden Health and Disease Study. We analyzed 14 biomarkers and 17 SNPs in prediagnostic blood and determined KRAS and BRAF mutation status in tumor tissue. In a multivariate network analysis, no variable displayed a strong association with the risk of specific CRC subtypes. A non-synonymous SNP in the CTH gene, rs1021737, had a stronger association compared with other variables. In subsequent univariate analyses, participants with variant rs1021737 genotype had a decreased risk of KRAS-mutated CRC (OR per allele = 0.72, 95% CI = 0.50, 1.05), and an increased risk of BRAF-mutated CRC (OR per allele = 1.56, 95% CI = 1.07, 2.30), with weak evidence for heterogeneity (Pheterogeneity = 0.01). This subtype-specific SNP association was not replicated in a case-case analysis of 533 CRC cases from The Cancer Genome Atlas (P = 0.85). In conclusion, we found no support for clear subtype-specific roles of one-carbon metabolism biomarkers and SNPs in CRC development, making differences in CRC molecular subtype distributions an unlikely explanation for the varying results on the role of one-carbon metabolism in CRC development across previous studies. Further investigation of the CTH gene in colorectal carcinogenesis with regards to KRAS and BRAF mutations or other molecular characteristics of the tumor may be warranted
One-carbon metabolism biomarkers and genetic variants in relation to colorectal cancer risk by <i>KRAS</i> and <i>BRAF</i> mutation status
<div><p>Disturbances in one-carbon metabolism, intracellular reactions involved in nucleotide synthesis and methylation, likely increase the risk of colorectal cancer (CRC). However, results have been inconsistent. To explore whether this inconsistency could be explained by intertumoral heterogeneity, we evaluated a comprehensive panel of one-carbon metabolism biomarkers and some single nucleotide polymorphisms (SNPs) in relation to the risk of molecular subtypes of CRC defined by mutations in the <i>KRAS</i> and <i>BRAF</i> oncogenes. This nested case-control study included 488 CRC cases and 947 matched controls from two population-based cohorts in the Northern Sweden Health and Disease Study. We analyzed 14 biomarkers and 17 SNPs in prediagnostic blood and determined <i>KRAS</i> and <i>BRAF</i> mutation status in tumor tissue. In a multivariate network analysis, no variable displayed a strong association with the risk of specific CRC subtypes. A non-synonymous SNP in the <i>CTH</i> gene, rs1021737, had a stronger association compared with other variables. In subsequent univariate analyses, participants with variant rs1021737 genotype had a decreased risk of <i>KRAS</i>-mutated CRC (OR per allele = 0.72, 95% CI = 0.50, 1.05), and an increased risk of <i>BRAF</i>-mutated CRC (OR per allele = 1.56, 95% CI = 1.07, 2.30), with weak evidence for heterogeneity (P<sub>heterogeneity</sub> = 0.01). This subtype-specific SNP association was not replicated in a case-case analysis of 533 CRC cases from The Cancer Genome Atlas (P = 0.85). In conclusion, we found no support for clear subtype-specific roles of one-carbon metabolism biomarkers and SNPs in CRC development, making differences in CRC molecular subtype distributions an unlikely explanation for the varying results on the role of one-carbon metabolism in CRC development across previous studies. Further investigation of the <i>CTH</i> gene in colorectal carcinogenesis with regards to <i>KRAS</i> and <i>BRAF</i> mutations or other molecular characteristics of the tumor may be warranted.</p></div
Multivariate Bayesian network learning results.
<p><b>(A)</b> Bayesian network of all included variables estimated from data with the Hill-climbing (HC) algorithm, averaged over 1000 bootstrap replicates. An edge between two variables indicates an association independent of all other variables in the network. Edge thickness corresponds to the strength of association, measured by edge confidence (proportion of times an edge was present in 1000 bootstrap sample networks). Node size corresponds to the number of edge connections (i.e., number of independent associations with other variables) <b>(B)</b> Strength of association to CRC risk by <i>KRAS</i> and <i>BRAF</i> mutation status for each biomarker and SNP. Abbreviations: BMI: Body mass index, CRC: Colorectal cancer, DMG: Dimethylglycine, eGFR: estimated glomerular filtration rate, PA: Physical activity.</p
Study design.
<p>Illustrating the selection of participants based on the availability of one-carbon metabolism data in CRC cases and matched controls, and availability of <i>BRAF</i> and <i>KRAS</i> mutation status data in the CRC cases. *Other than non-melanoma skin cancer. †High methionine sulfoxide, indicates sample degradation. Abbreviations: CRC: Colorectal cancer, VIP: Västerbotten Intervention Programme, MSP: Mammography Screening Project.</p
Replication of the <i>CTH</i> rs1021737 SNPs associations in The Cancer Genome Atlas (TCGA).
<p>Replication of the <i>CTH</i> rs1021737 SNPs associations in The Cancer Genome Atlas (TCGA).</p