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 291 

To further dissect the genetic architecture of colorectal cancer (CRC), we performed 292 

whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence 293 

variants and Haplotype Reference Consortium panel variants into genome-wide association 294 

study data, and tested for association in 34,869 cases and 29,051 controls. Findings were 295 

followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly 296 

protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 297 

individuals, we identified 40 new independent signals at P<5×10-8, bringing the number of 298 

known independent signals for CRC to approximately 100. New signals implicate lower-299 

frequency variants, Krüppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long 300 

noncoding RNAs, somatic drivers, and support a role of immune function. Heritability 301 

analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies 302 

enabling rare variant analysis will improve understanding of underlying biology, and 303 

impact personalized screening strategies and drug development. 304 

 305 

Colorectal cancer (CRC) is the fourth leading cancer-related cause of death worldwide1 and 306 

presents a major public health burden. Up to 35% of inter-individual variability in CRC risk has 307 

been attributed to genetic factors2,3. Family-based studies have identified rare high-penetrance 308 

mutations in at least a dozen genes but, collectively, these account for only a small fraction of 309 
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familial risk4. Over the past decade, genome-wide association studies (GWAS) for sporadic 310 

CRC, which constitutes the majority of cases, have identified approximately 60 association 311 

signals at over 50 loci5–22. Yet, most of the genetic factors contributing to CRC risk remain 312 

undefined. This severely hampers our understanding of biological processes underlying CRC. It 313 

also limits CRC precision prevention, including individualized preventive screening 314 

recommendations and development of cancer prevention drugs. The contribution of rare 315 

variation to sporadic CRC is particularly poorly understood. 316 

 317 

To expand the catalog of CRC risk loci and improve our understanding of rare variants, genes, 318 

and pathways influencing sporadic CRC risk, and risk prediction, we performed the largest and 319 

most comprehensive whole-genome sequencing (WGS) study and GWAS meta-analysis for 320 

CRC to date, combining data from three consortia: the Genetics and Epidemiology of Colorectal 321 

Cancer Consortium (GECCO), the Colorectal Cancer Transdisciplinary Study (CORECT), and 322 

the Colon Cancer Family Registry (CCFR). Our study almost doubles the number of individuals 323 

analyzed, incorporating GWAS results from >125,000 individuals, and substantially expands and 324 

strengthens our understanding of biological processes underlying CRC risk. 325 

 326 

RESULTS 327 

Study Overview 328 

We performed WGS of 1,439 CRC cases and 720 controls of European ancestry at low coverage 329 

(3.8-8.6×). We detected, called, and estimated haplotype phase for 31.8 million genetic variants, 330 

including 1.7 million short insertion-deletion variants (indels) (Online Methods). These data 331 

include many rare variants not studied by GWAS. Based on other large-scale WGS studies 332 

employing a similar design, we expected to have near-complete ascertainment of single 333 

nucleotide variants (SNVs) with minor allele count (MAC) greater than five (minor allele 334 

frequency (MAF) >0.1%), and high accuracy at heterozygous genotypes23,24. We tested 14.4 335 

million variants with MAC ≥5 for CRC association using logistic regression (Online Methods) 336 

but did not find any significant associations. To increase power to detect associations with rare 337 

and low-frequency variants of modest effect, we imputed variants from the sequencing 338 

experiment into 34,869 cases and 29,051 controls of predominantly European (91.7%) and East 339 

Asian ancestry (8.3%) from 30 existing GWAS studies (Online Methods and Supplementary 340 
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Table 1). By design, two thirds of sequenced individuals were CRC cases, thereby enriching the 341 

panel for rare or low-frequency alleles that increase CRC risk. We contributed our sequencing 342 

data to the Haplotype Reference Consortium (HRC)25 and imputed the 30 existing GWAS 343 

studies to the HRC panel, which comprises haplotypes for 32,488 individuals. Results of these 344 

GWAS meta-analyses (referred to as Stage 1 meta-analysis; Online Methods) informed the 345 

design of a custom Illumina array comprising the OncoArray, a custom array to identify cancer 346 

risk loci26, and 15,802 additional variants selected based on Stage 1 meta-analysis results. We 347 

genotyped 12,007 cases and 12,000 controls of European ancestry with this custom array, and 348 

combined them with an additional 11,255 cases and 26,296 controls with GWAS data, resulting 349 

in a Stage 2 meta-analysis of 23,262 CRC cases and 38,296 controls (Online Methods, 350 

Supplementary Fig. 1, and Supplementary Table 1). Next, we performed a combined (Stage 1 351 

+ Stage 2) meta-analysis of up to 58,131 cases and 67,347 controls. This meta-analysis was 352 

based on the HRC-panel-imputed data because, given its large size, this panel results in superior 353 

imputation quality and enables accurate imputation of variants with MAFs as low as 0.1%25. 354 

Here, we report new association signals discovered through our custom genotyping experiment 355 

and replicating in Stage 2 at the Bonferroni significance threshold of P < 7.8×10-6 (Online 356 

Methods), as well as distinct association signals passing the genome-wide significance (GWS) 357 

threshold of P < 5×10-8 in the combined meta-analysis of up to 125,478 individuals. 358 

 359 

CRC risk loci 360 

In the combined meta-analysis, we identified 30 new CRC risk loci reaching GWS and >500kb 361 

away from previously reported CRC risk variants (Table 1; Supplementary Fig. 2 and 3). 362 

Twenty-two of these were represented on our custom genotyping panel, either by the lead variant 363 

(15 loci) or by a variant in linkage disequilibrium (LD) (7 loci; r2>0.7). Of these 22 variants, 364 

eight attained the Bonferroni significance threshold in the Stage 2 meta-analysis (Table 1). 365 

 366 

Among these eight loci is the first rare variant signal identified for sporadic CRC, involving five 367 

0.3% frequency variants at 5q21.1, near genes CHD1 and RGMB. SNP rs145364999, intronic to 368 

CHD1, had high quality genotyping (Supplementary Fig. 4). The variant was well imputed in 369 

the remaining sample sets (imputation quality r2 ranged from 0.66 to 0.87; Supplementary 370 

Table 2) and there was no evidence of heterogeneity of effects (heterogeneity P=0.63; 371 
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Supplementary Table 2). The rare allele confers a strong protective effect (allelic odds ratio 372 

(OR)=0.52 in Stage 2; 95% confidence interval (CI)=0.40-0.68). Chromatin remodeling factor 373 

CHD1 provides an especially plausible candidate and has been shown to be a synthetically-374 

essential gene27 that is occasionally deleted in some cancers, but always retained in PTEN-375 

deficient cancers28. The resulting mutually exclusive deletion pattern of CHD1 and PTEN has 376 

been observed in prostate, breast, and CRC TCGA data28. We hypothesize that the rare allele 377 

confers a protective effect through lowering CHD1 expression, which is required for nuclear 378 

factor-κβ (NF-κβ) pathway activation and growth in cancer cells driven by loss of the tumor 379 

suppressor PTEN28. However, we cannot rule out involvement of nearby candidate gene RGMB 380 

that encodes a co-receptor for bone morphogenetic proteins BMP2 and BMP4, both of which are 381 

linked to CRC risk through GWAS9,11. Additionally, RGMB has been shown to bind to PD-L229, 382 

a known ligand of PD-1, an immune checkpoint blockade inhibitor targeted by cancer 383 

immunotherapy30. 384 

 385 

The vast majority of new association signals involve common variants. We found associations 386 

near strong candidate genes for CRC risk in pathways or gene families not previously implicated 387 

by GWAS. Locus 13q22.1, represented by lead SNP rs78341008 (MAF 7.2%; P=3.2×10-10), is 388 

near KLF5, a known CRC oncogene that can be activated by somatic hotspot mutations or super-389 

enhancer duplications31,32. KLF5 encodes transcription factor Krüppel-like factor 5 (KLF5), 390 

which promotes cell proliferation and is highly expressed in intestinal crypt stem cells. We also 391 

found an association at 19p13.11, near KLF2. KLF2 expression in endothelial cells is critical for 392 

normal blood vessel function33,34. Down-regulated KLF2 expression in colon tumor tissues 393 

contributes to structurally and functionally abnormal tumor blood vessels, resulting in impaired 394 

blood flow and hypoxia in tumors35. Another locus at 9q31.1 is near LPAR1, which encodes a 395 

receptor for lysophosphatidic acid (LPA). LPA-induced expression of hypoxia-inducible factor 1 396 

(HIF-1α), a key regulator of cellular adaptation to hypoxia and tumorigenesis, depends on 397 

KLF536. Additionally, LPA activates multiple signaling pathways and stimulates proliferation of 398 

colon cancer cells by activation of KLF537. Another locus (7p13) is near SNHG15, encoding a 399 

long non-coding RNA (lncRNA) that epigenetically represses KLF2 to promote pancreatic 400 

cancer proliferation38. 401 

 402 
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We found two loci near members of the Hedgehog (Hh) signaling pathway. Aberrant activation 403 

of this pathway, caused by somatic mutations or changes in expression, can drive tumorigenesis 404 

in many tumors39. Notably, downregulated stromal cell Hh signaling reportedly accelerates 405 

colonic tumorigenesis in mice40. Locus 3q13.2, represented by low-frequency lead SNP 406 

rs72942485 (MAF 2.2%; P=2.1×10-8), overlaps BOC, encoding a Hh coreceptor molecule. In 407 

medulloblastoma, upregulated BOC promotes Hh-driven tumor progression through Cyclin D1-408 

induced DNA damage41. In pancreatic cancer, a complex role for stromal BOC expression in 409 

tumorigenesis and angiogenesis has been reported42. Locus 4q31.21 is near HHIP, encoding an 410 

inhibitor of Hh signaling. Of note, the Hh signaling pathway was also significantly enriched in 411 

our pathway analysis (described below). 412 

 413 

Locus 11q22.1 is near YAP1, which encodes a critical downstream regulatory target in the Hippo 414 

signaling pathway that is gaining recognition as a pivotal player in organ size control and 415 

tumorigenesis43. YAP1 is highly expressed in intestinal crypt stem cells, and in transgenic mice, 416 

overexpression resulted in severe intestinal dysplasia and loss of differentiated cell types44, 417 

reminiscent of phenotypes observed in mice and humans with deleterious germline APC 418 

mutations. Further, Hypoxia-inducible factor 2α (HIF-2α) promotes colon cancer growth by up-419 

regulating YAP1 activity45. 420 

 421 

We provide further evidence for a link between immune function and CRC pathogenesis, and 422 

implicate the major histocompatibility complex (MHC) in CRC risk. We identified a locus near 423 

genes HLA-DRB1/HLA-DQA1, which is associated with immune-mediated diseases46. 424 

 425 

We identified two new loci near known tumor suppressor genes. Locus 4q24 is near TET2, a 426 

chromatin-remodeling gene frequently somatically mutated in multiple cancers, including colon 427 

cancer47, and overlapping GWAS signals for multiple other cancers48–50. The CDKN2B-428 

CDKN2A-ANRIL locus at 9p21.3 is a well-established hot spot of pleiotropic GWAS 429 

associations for many complex diseases including coronary artery disease51, type 2 diabetes52, 430 

and cancers50,53,54–56. Interestingly, lead variant rs1537372 is in high LD (r2=0.82) with variants 431 

associated with coronary artery disease51 and endometriosis57, but not with the other cancer-432 

associated variants. CDKN2A/B encode cyclin-dependent kinase inhibitors that regulate the cell 433 
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cycle. CDKN2A is one of the most commonly inactivated genes in cancer, and is a high 434 

penetrance gene for melanoma58,59. CDKN2B activation is tightly controlled by the cytokine 435 

TGF-β, further linking this signaling pathway with CRC tumorigenesis60. 436 

 437 

Our findings implicate genes in pathways with established roles in CRC pathogenesis. We 438 

identified loci at SMAD3 and SMAD9, members of the TGF-β signaling pathway that includes 439 

genes linked to familial CRC syndromes (e.g., SMAD4 and BMPR1A) and several GWAS-440 

implicated genes (e.g., SMAD7, BMP2, BMP4)61. We identified another locus near TGF-β 441 

Receptor 1 (TGFBR1). Nearby gene GALNT12 reportedly harbors inactivating germline and 442 

somatic mutations in human colon cancers62 and, therefore, could also be the regulated effector 443 

gene. We identified a locus at 14q23.1 near DACT1, a member of the Wnt-β-catenin pathway 444 

with genes previously linked to familial CRC syndromes (APC63), and several GWAS-implicated 445 

genes (e.g., CTNNB118 and TCF7L217 ). Genes related to telomere biology were linked by other 446 

GWAS: TERC10 and TERT22, encoding the RNA and protein subunit of telomerase respectively, 447 

and FEN117, involved in telomere stability64. A new locus at 20q13.33 harbors another gene 448 

related to telomere biology, RTEL1. This gene is involved in DNA double-strand break repair, 449 

and overlaps GWAS signals for cancers55,65 and inflammation-related phenotypes, including 450 

inflammatory bowel disease66 and atopic dermatitis67. 451 

 452 

Of 61 signals at 56 loci previously associated with CRC at GWS, 42 showed association 453 

evidence at P < 5×10-8 in the combined meta-analysis, and 55 at P < 0.05 in the independent 454 

Stage 2 meta-analysis (Supplementary Table 3). Of note, the association of rs755229494 at 455 

locus 5q22.2 (P=2.1×10-12) was driven by studies with predominantly Ashkenazi Jewish ancestry 456 

and this SNP is in perfect LD with known missense SNP rs1801155 in the APC gene (I1307K), 457 

the minor allele of which is enriched in this population (MAF 6%), but rare in other 458 

populations68,69. 459 

 460 

Delineating distinct association signals at CRC risk loci 461 

To identify additional independent association signals at known or new CRC risk loci, we 462 

conducted conditional analysis using individual-level data of 125,478 participants (Online 463 

Methods). At nine loci we observed 10 new independent association signals that attained PJ 464 
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<5×10-8 in a joint multiple-variant analysis (Table 2; Supplementary Table 4; Supplementary 465 

Fig. 5). Because this analysis focused on <5% of the genome, we also report signals at PJ <1×10-466 
5 in Supplementary Table 5. At 22 loci, we observed 25 new suggestive associations with PJ 467 

<1×10-5. 468 

 469 

At 11q13.4, near POLD3 and CHRDL2, we identified a new low-frequency variant (lead SNP 470 

rs61389091, MAF 3.94%) separated by a recombination hotspot from the known common 471 

variant signal12 (LD r2 between lead SNPs <0.01). At 5p15.33, we identified another lower-472 

frequency variant association (lead SNP rs78368589, MAF 5.97%), which was independent from 473 

the previously reported common variant signal 56kb away near TERT and CLPTM1L (LD r2 with 474 

lead SNP rs2735940 <0.01)22. Variants in this region were linked to many cancer types, 475 

including lung, prostate, breast, and ovarian cancer70. 476 

 477 

The remaining eight new signals involved common variants. At new locus 2q33.1, near genes 478 

PLCL1 and SATB2, two statistically independent associations (LD r2 between two lead SNPs 479 

<0.01) are separated by a recombination hotspot (Supplementary Fig. 5). In the MHC region, 480 

we identified a conditionally independent signal near genes involved in NF-κβ signaling, 481 

including the gene encoding tumor necrosis factor-α, genes for the stress-signaling proteins 482 

MICA/MICB, and HLA-B. Locus 20p12.3, near BMP2, harbored four distinct association signals 483 

(Figure 1), two of which were reported previously10,11 (Supplementary Table 5). All four SNPs 484 

selected in the model were in pairwise linkage equilibrium (maximum LD r2 = 0.039, between 485 

rs189583 and rs994308). Our conditional analysis further confirmed that the signal ~1-Mb 486 

centromeric of BMP2, near gene HAO1, is independent. At 8q24.21 near MYC, the locus 487 

showing the second strongest statistical evidence of association in the combined meta-analysis 488 

(lead SNP rs6983267; P = 3.4×10-64), we identified a second independent signal (lead SNP 489 

rs4313119, PJ = 2.1×10-9; LD r2 with rs6983267 <0.001). At the recently reported locus 490 

5p13.122, near the non-coding RNA gene LINC00603, we identified an additional signal (lead 491 

SNP rs7708610) that was partly masked by the reported signal in the single-variant analysis due 492 

to the negative correlation between rs7708610 and rs12514517 (r = −0.18; r2 = 0.03). This 493 

caused significance for both SNPs to increase markedly when fitted jointly (rs7708610, 494 

unconditional P = 1.5×10-5 and PJ = 3.8×10-9). At 12p13.32 near CCND2, we identified a new 495 
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signal (lead SNP rs3217874, PJ = 2.4×10-9) and confirmed two previously associated signals13–15 496 

(Supplementary Text). At the GREM1 locus on 15q13.3, two independent signals were 497 

previously described11. Our analyses suggest that this locus harbors three signals. A new signal 498 

represented by SNP rs17816465 is conditionally independent from the other two signals (PJ = 499 

1.4×10-10, conditioned on rs2293581 and rs12708491; LD with conditioning SNPs r2<0.01; 500 

Supplementary Text). 501 

 502 

Additionally, signals with PJ values approaching GWS were observed at new locus 3q13.2 near 503 

BOC (rs13086367, unconditional P = 6.7×10-8, PJ = 6.9×10-8, MAF=47.4%), 96kb from the low-504 

frequency signal represented by rs72942485 (unconditional P = 2.1×10-8, PJ = 1.3×10-8, 505 

MAF=2.2%); at known locus 10q22.3 near ZMIZ1 (rs1250567, unconditional P = 3.1×10-8, PJ = 506 

7.2×10-8, MAF=45.1%); and at new locus 13q22.1 near KLF5 (rs45597035, unconditional P = 507 

2.7×10-9, PJ = 8.1×10-8, MAF=34.4%) (Supplementary Table 5). Furthermore, we clarify 508 

previously reported independent association signals (Supplementary Text). 509 

 510 

Associations of CRC risk variants with other traits 511 

Nineteen of the GWS association signals for CRC were in high LD (r2>0.7) with at least one 512 

SNP in the NHGRI-EBI GWAS Catalog46 that has significant association in GWAS of other 513 

traits. Notable overlap included SNPs associated with other cancers, immune-related traits (e.g., 514 

tonsillectomy, inflammatory bowel disease, and circulating white blood cell traits), obesity traits, 515 

blood pressure, and other cardiometabolic traits (Supplementary Table 6). 516 

 517 

Mechanisms underlying CRC association signals 518 

To further localize variants driving the 40 newly identified signals, we used association evidence 519 

to define credible sets of variants that are 99% likely to contain the causal variant (Online 520 

Methods). The 99% credible set size for new loci ranged from one (17p12) to 93 (2q33.1). For 521 

11 distinct association signals, the set included ten or fewer variants (Supplementary Table 7). 522 

At locus 17p12, we narrowed the candidate variant to rs1078643, located in exon 1 of the 523 

lncRNA LINC00675 that is primarily expressed in gastrointestinal tissues. Small credible sets 524 

were observed for locus 4q31.21 (two variants, indexed by synonymous SNP rs11727676 in 525 

HHIP), and signals at known loci near GREM1 (one variant) and CCND2 (two variants). 526 
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 527 

We performed functional annotation of credible set variants to nominate putative causal variants. 528 

Eight sets contained coding variants but only the synonymous SNP in HHIP had a high posterior 529 

probability of driving the association (Supplementary Table 8). Next, we examined overlap of 530 

credible sets with regulatory genomic annotations from 51 existing CRC-relevant datasets to 531 

examine non-coding functions (Online Methods). Also, to better refine regulatory elements in 532 

active enhancers, we performed ATAC-seq to measure chromatin accessibility in four colonic 533 

crypts and used resulting data to annotate GWAS signals. 534 

 535 

Of the 40 sets, 36 overlapped with active enhancers identified by histone mark H3K27ac 536 

measured in normal colonic crypt epithelium, CRC cell lines, or CRC tissue (Supplementary 537 

Table 8; Supplementary Fig. 6). Twenty of these 36 overlapped with super-enhancers. Notably, 538 

when compared with epigenomics data from normal colonic crypt epithelium, all 36 sets 539 

overlapped enhancers with gained or lost activity in one or more CRC specimens. Eleven of 540 

these sets overlapped enhancers recurrently gained or lost in >20 CRC cell lines. 541 

 542 

The locus at GWAS hot spot 9p21 overlaps a super-enhancer, and the credible set is entirely 543 

intronic to ANRIL, alias CDKN2B-AS1. The Genotype-Tissue Expression (GTEx) data show that 544 

the antisense lncRNA ANRIL is exclusively expressed in transverse colon and small intestine. 545 

Interestingly, ANRIL recruits SUZ12 and EHZ2 to epigenetically silence tumor suppressor genes 546 

CDKN2A/B71. 547 

 548 

Noncoding somatic driver mutations or focal amplifications have been reported in regions 549 

regulating expression of MYC72, TERT73, and KLF531, now implicated by GWAS for CRC. We 550 

checked whether GWAS-identified association signals co-localize with these regions and found 551 

that the KLF5 signal overlaps the somatically amplified super-enhancer flanked by KLF5 and 552 

KLF12 (Figure 2). Also, the previously reported signal in the TERT promotor region22 overlaps 553 

with the recurrent somatically mutated region in multiple cancers73. 554 

 555 

To test whether CRC associations are non-randomly distributed across genomic features, we 556 

used GARFIELD74. Focusing on DNase I hypersensitive site (DHS) peaks that identify open 557 
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chromatin, we observed significant enrichment across many cell types, particularly fetal tissues, 558 

with strongest enrichment observed in fetal gastrointestinal tissues, CD20+ primary cells (B 559 

cells), and embryonic stem cells (Supplementary Fig. 7; Supplementary Table 9). 560 

 561 

We used MAGENTA75 to identify pathways or gene sets enriched for associations with CRC, 562 

assessing two gene P-value cutoffs: 95th and 75th percentiles. At the 75th percentile, we 563 

observed enrichment of multiple KEGG cancer pathways at a false discovery rate (FDR) of 0.05. 564 

This was not observed for the 95th percentile cutoff and suggests that many more loci that are 565 

shared with other cancer types remain to be identified in larger studies. Using the 75th (95th) 566 

percentile cutoff, at FDR 0.05 and 0.20, we found enrichment of 7 (5) and 53 (24) gene sets, 567 

respectively. Established pathways related to TGF-β/SMAD and BMP signaling were among the 568 

top enriched pathways. Other notable enriched pathways included Hedgehog signaling, basal cell 569 

carcinoma, melanogenesis, cell cycle, S phase, and telomere maintenance (Supplementary 570 

Table 10). 571 

 572 

Polygenicity of colorectal cancer and contribution of rare variants 573 

To estimate the contribution of rare variants (MAF ≤1%) to CRC heritability, we used the LD- 574 

and MAF-stratified component GREML (GREML-LDMS) method implemented in GCTA76 575 

(Online Methods). Assuming a lifetime risk of 4.3%, we estimated that all imputed autosomal 576 

variants explain 21.6% (95% CI=17.5-25.7%) of the variation in liability for CRC, with almost 577 

half of this contributed by rare variants (ℎ"#= 9.7%, 95% CI=6.2-13.3%; likelihood ratio test 578 

P=0.003); the estimated liability-scale heritability for variants with MAF >1% is 11.8% (95% 579 

CI=8.9-14.7%). Our overall estimate falls within the range of heritability reported by large twin 580 

studies2. Because heritability estimates for rare variants are sensitive to potential biases due to 581 

technical effects or population stratification77 and the contribution of rare variants is probably 582 

underestimated due to limitations of genotype imputation, results should be interpreted with 583 

caution. Overall, findings suggest that missing heritability is not large, but that many rare and 584 

common variants have yet to be identified. 585 

 586 

Familial relative risk explained by GWAS-identified variants 587 
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Adjusting for winner’s curse78, the familial relative risk (RR) to first-degree relatives (λ0) 588 

attributable to GWAS-identified variants rose from 1.072 for the 55 previously described 589 

autosomal risk variants that showed evidence for replication at P <0.05, to 1.092 after inclusion 590 

of 40 new signals, and increased further to 1.098 when we included 25 suggestive association 591 

signals reported in Supplementary Table 5 (Online Methods). Assuming a λ0 of 2.2, the 55 592 

established signals account for 8.8% of familial RR explained (95% CI: 8.1-9.4). Established 593 

signals combined with 40 newly discovered signals account for 11.2% (95% CI: 10.5-12.0), and 594 

adding 25 suggestive signals increases this to 11.9% (95% CI: 11.1-12.7). 595 

 596 

Implications for stratified screening prevention 597 

We demonstrate how using a polygenic risk score (PRS) derived from 95 independent 598 

association signals could impact clinical guidelines for preventive screening. The difference in 599 

recommended starting age for screening for those in the highest 1% (and 10%) percentiles of risk 600 

compared with lowest percentiles is 18 years (and 10 years) for men, and 24 years (and 12 years) 601 

for women (Figure 3; Online Methods). Supplementary Table 11 gives risk allele frequency 602 

(RAF) estimates in different populations for variants included in the PRS. As expected, RAFs 603 

vary across populations. Furthermore, differences in LD between tagging and true causal variants 604 

across populations can result in less prediction accuracy and subsequent lower predictive power 605 

of the PRS in non-European populations. Accordingly, it will be important to develop ancestry-606 

specific PRSs that incorporate detailed fine-mapping results for each GWAS signal. 607 

 608 

DISCUSSION 609 

To further define the genetic architecture of sporadic CRC, we performed low-coverage WGS 610 

and imputation into a large set of GWAS data. We discovered 40 new CRC signals and 611 

replicated 55 previously reported signals. We found the first rare variant signal for sporadic 612 

CRC, which represents the strongest protective rare allelic effect identified to date. Our analyses 613 

highlight new genes and pathways contributing to underlying CRC risk and suggest roles for 614 

Krüppel-like factors, Hedgehog signaling, Hippo-YAP signaling, and immune function. Multiple 615 

loci provide new evidence for an important role of lncRNAs in CRC tumorigenesis79. Functional 616 

genomic annotations support that most sporadic CRC genetic risk lies in non-coding genomic 617 

regions. We further show how newly discovered variants can lead to improved risk prediction. 618 
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 619 

This study underscores the critical importance of large-scale GWAS collaboration. While 620 

discovery of the rare variant signal was only possible through increased coverage and improved 621 

imputation accuracy enabled by imputation panels, sample size was pivotal for discovery of new 622 

CRC loci. Results suggest that CRC exhibits a highly polygenic architecture, much of which 623 

remains undefined. This also suggests that continued GWAS efforts, together with increasingly 624 

comprehensive imputation panels that allow for improved low-frequency and rare genetic variant 625 

imputation, will uncover more CRC risk variants. In addition, to investigate sites that are not 626 

imputable, large-scale deep sequencing will be needed. Importantly, the prevailing European bias 627 

in CRC GWAS limits the generalizability of findings and the application of PRSs in non-628 

European (especially African) populations80. Therefore, a broader representation of ancestries in 629 

CRC GWAS is necessary. 630 

 631 

Studies of somatic genomic alterations in cancer have mostly focused on the coding genome and 632 

identification of noncoding drivers has proven to be challenging73. Yet, noncoding somatic driver 633 

mutations or focal amplications in regulatory regions impacting expression have been reported 634 

for MYC72, TERT73, and KLF531. The observed overlap between GWAS-identified CRC risk loci 635 

and somatic driver regions strongly suggests that expanding the search of somatic driver 636 

mutations to noncoding regulatory elements will yield additional discoveries and that searches 637 

for somatic drivers can be guided by GWAS findings.  638 

 639 

Additionally, we found loci near proposed drug targets, including CHD1, implicated by the rare 640 

variant signal, and KLF5. To date, cancer drug target discovery research has almost exclusively 641 

focused on properties of cancer cells, yielding drugs that target proteins either highly expressed 642 

or expressed in a mutant form due to frequent recurrent somatic missense mutations (e.g., 643 

BRAFV600E) or gene fusion events. In stark contrast with other common complex diseases, cancer 644 

GWAS results are not being used extensively to inform drug target selection. It has been 645 

estimated that selecting targets supported by GWAS could double the success rate in clinical 646 

development81. Our discoveries corroborate that not using GWAS results to inform drug 647 

discovery is a missed opportunity, not only for treating cancers, but also for chemoprevention in 648 

high-risk individuals. 649 
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 650 

In summary, in the largest genome-wide scan for sporadic CRC risk thus far, we identified the 651 

first rare variant signal for sporadic CRC, and almost doubled the number of known association 652 

signals. Our findings provide a substantial number of new leads that may spur downstream 653 

investigation into the biology of CRC risk, and that will impact drug development and clinical 654 

guidelines, such as personalized screening decisions. 655 
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FIGURE LEGENDS 882 
 883 
Figure 1  Conditionally independent association signals at the BMP2 locus. Regional 884 

association plot showing the unconditional –log10(P-value) for the association with CRC risk in 885 

the combined meta-analysis of up to 125,478 individuals, as a function of genomic position 886 

(Build 37) for each variant in the region. The lead variants are indicated by a diamond symbol 887 

and its positions are indicated by dashed vertical lines. The color-labeling and shape of all other 888 

variants indicate the lead variant with which they are in strongest LD. The two new genome-889 

wide significant signals are indicated by an asterisk. 890 

 891 
Figure 2  Functional genomic annotation of new CRC risk locus overlapping KLF5 super-892 

enhancer. Top: Regional association plot showing the unconditional –log10(P-value) for the 893 

association with CRC risk in the combined meta-analysis of up to 125,478 individuals, as a 894 

function of genomic position (Build 37) for each variant in the region. The lead variants are 895 

indicated by a diamond symbol and its positions are indicated by dashed vertical lines. The 896 

color-labeling and shape of all other variants indicate the lead variant with which they are in 897 

strongest LD. Bottom: UCSC genome browser annotations for region overlapping the super-898 

enhancer flanked by KLF5 and KLF12, and spanning variants in LD with rs78341008, and with 899 

two conditionally independent association signals indexed by rs45597035 and rs1924816. The 900 

region is annotated with the following tracks (from top to bottom): UCSC gene annotations; 901 

epigenomic profiles showing MACS2 peak calls as transparent overlays for different samples 902 

taken from non-diseased colonic crypt cells or colon tissue (purple) and from different primary 903 

CRC cell lines or tumor samples (teal); position of the lead variants and variants in LD with the 904 

lead; variants in the 99% credible set; the union of super-enhancers called using the ROSE 905 

package; gray bars highlight the targeted enhancers (e1,e3, and e4) previously shown by Zhang 906 

et al.31 to have combinatorial effects on KLF5 expression. ATAC-seq data newly generated for 907 

this study show high resolution annotation of putative binding regions within the active super-908 

enhancer further fine-mapping putative causal variants at each of the three signals. 909 

 910 
Figure 3  Recommended age to start CRC screening based on a polygenic risk score (PRS). 911 

The PRS was constructed using the 95 known and newly discovered variants. The horizontal 912 

lines represent the recommended age for the first endoscopy for an average-risk person in the 913 
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current screening guideline for CRC. The risk threshold to determine the age for the first 914 

screening was set as the average of 10-year CRC risks for a 50-year-old man (1.25%) and 915 

woman (0.68%), i.e. (1.25%+0.68%)/2 = 0.97%, who have not previously received an 916 

endoscopy. Details are given in the Online Methods. 917 

 918 



Table 1  New CRC risk loci reaching genome-wide significance (P < 5´10-8) in the combined (Stage 1 and Stage 2) meta-analysis.  919 

       
Stage 1 meta-analysis: 
up to 34,869 cases and 

29,051 controls 

Stage 2 meta-analysis: 
up to 23,262 cases and 

38,296 controls 

Combined meta-analysis: 
up to 58,131 cases and 

67,347 controls 

Locus Nearby 
gene(s) 

rsID lead 
variant Chr. Position 

(Build 37) 
Alleles 

(risk/other) 
RAF 
(%) OR 95% CI P OR 95% CI P OR 95% CI P 

Rare variants 
5q21.1 RGMB; CHD1 rs145364999* 5 98,206,082 T/A 99.69 1.57 1.20-2.05 9.0´10-4 1.93 1.48-2.52 1.0´10-6 1.74 1.45-2.10 6.3´10-9 
Low-frequency variants 
3q13.2 BOC rs72942485 3 112,999,560 G/A 98.02 1.16 1.07-1.26 2.5´10-4 1.23 1.12-1.35 1.5´10-5 1.19 1.12-1.26 2.1´10-8 
Common variants 
1p34.3 FHL3 rs4360494§ 1 38,455,891 G/C 45.39 1.05 1.03-1.08 2.9´10-5 1.06 1.03-1.08 3.3´10-5 1.05 1.04-1.07 3.8´10-9 

1p32.3 TTC22; 
PCSK9 rs12144319* 1 55,246,035 C/T 25.48 1.07 1.04-1.10 1.4´10-6 1.07 1.04-1.10 5.5´10-6 1.07 1.05-1.09 3.3´10-11 

2q24.2 MARCH7; 
TANC1 rs448513§ 2 159,964,552 C/T 32.60 1.06 1.03-1.08 1.9´10-5 1.05 1.02-1.08 5.8´10-4 1.05 1.03-1.07 4.4´10-8 

2q33.1 SATB2 rs983402* 2 199,781,586 T/C 33.12 1.05 1.03-1.08 7.2´10-5 1.08 1.05-1.11 1.0´10-8 1.07 1.05-1.09 7.7´10-12 
3q22.2 SLCO2A1 rs10049390§ 3 133,701,119 A/G 73.53 1.06 1.03-1.09 4.9´10-5 1.07 1.04-1.10 1.8´10-5 1.06 1.04-1.08 3.8´10-9 
4q24 TET2 rs1391441 4 106,128,760 A/G 67.20 1.05 1.02-1.07 1.5´10-4 1.06 1.03-1.09 2.3´10-5 1.05 1.03-1.07 1.6´10-8 
4q31.21 HHIP rs11727676 4 145,659,064 C/T 9.80 1.08 1.03-1.13 4.5´10-4 1.10 1.05-1.14 1.5´10-5 1.09 1.06-1.12 2.9´10-8 

6p21.32 HLA-DRB1; 
HLA-DQA1 rs9271695* 6 32,593,080 G/A 79.54 1.09 1.06-1.13 1.3´10-7 1.09 1.05-1.12 1.7´10-7 1.09 1.07-1.12 1.1´10-13 

7p13 

MYO1G; 
SNHG15; 
CCM2; 
TBRG4 

rs12672022§ 7 45,136,423 T/C 83.45 1.07 1.04-1.11 1.6´10-5 1.06 1.03-1.10 4.4´10-4 1.07 1.04-1.09 2.8´10-8 

9p21.3 
ANRIL; 
CDKN2A; 
CDKN2B 

rs1537372§ 9 22,103,183 G/T 56.92 1.05 1.02-1.07 1.4´10-4 1.06 1.03-1.08 2.4´10-5 1.05 1.03-1.07 1.4´10-8 

9q22.33 GALNT12; 
TGFBR1 rs34405347§ 9 101,679,752 T/G 90.34 1.08 1.04-1.13 5.5´10-5 1.09 1.04-1.13 1.5´10-4 1.09 1.05-1.12 3.1´10-8 

9q31.3 LPAR1 rs10980628 9 113,671,403 C/T 21.06 1.05 1.02-1.09 3.1´10-4 1.08 1.05-1.11 1.3´10-6 1.07 1.04-1.09 2.8´10-9 
11q22.1 YAP1 rs2186607 11 101,656,397 T/A 51.78 1.05 1.03-1.08 1.1´10-5 1.05 1.03-1.08 3.3´10-5 1.05 1.04-1.07 1.5´10-9 

12q12 PRICKLE1; 
YAF2 rs11610543§ 12 43,134,191 G/A 50.13 1.05 1.03-1.08 1.1´10-5 1.06 1.03-1.08 2.8´10-5 1.05 1.04-1.07 1.3´10-9 

12q13.3 STAT6; LRP1; 
NAB2 rs4759277 12 57,533,690 A/C 35.46 1.07 1.04-1.09 8.4´10-7 1.04 1.02-1.07 1.6´10-3 1.05 1.04-1.07 9.4´10-9 

13q13.3 SMAD9 rs7333607* 13 37,462,010 G/A 23.50 1.09 1.06-1.12 2.5´10-8 1.07 1.04-1.10 4.4´10-6 1.08 1.06-1.10 6.3´10-13 
13q22.1 KLF5 rs78341008§ 13 73,791,554 C/T 7.19 1.13 1.07-1.18 1.4´10-6 1.11 1.05-1.16 4.8´10-5 1.12 1.08-1.16 3.2´10-10 

13q34 
COL4A2; 
COL4A1; 
RAB20 

rs8000189 13 111,075,881 T/C 64.01 1.05 1.02-1.07 2.1´10-4 1.07 1.04-1.10 1.3´10-6 1.06 1.04-1.08 1.8´10-9 

14q23.1 DACT1 rs17094983§ 14 59,189,361 G/A 87.73 1.10 1.07-1.15 8.4´10-8 1.08 1.04-1.12 9.0´10-5 1.09 1.06-1.12 4.6´10-11 
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15q22.33 SMAD3 rs56324967* 15 67,402,824 C/T 67.57 1.07 1.04-1.10 2.2´10-7 1.08 1.05-1.11 9.8´10-8 1.07 1.05-1.09 1.1´10-13 
16q23.2 MAF rs9930005§ 16 80,043,258 C/A 43.03 1.05 1.03-1.08 1.3´10-5 1.05 1.02-1.07 4.0´10-4 1.05 1.03-1.07 2.1´10-8 
17p12 LINC00675 rs1078643* 17 10,707,241 A/G 76.36 1.07 1.04-1.10 9.2´10-6 1.09 1.05-1.12 1.1´10-7 1.08 1.05-1.10 6.6´10-12 
17q24.3 LINC00673 rs983318§ 17 70,413,253 A/G 25.26 1.07 1.04-1.10 1.2´10-6 1.05 1.02-1.08 8.0´10-4 1.06 1.04-1.08 5.6´10-9 

17q25.3 RAB40B; 
METRLN rs75954926* 17 81,061,048 G/A 65.68 1.10 1.07-1.13 9.4´10-11 1.09 1.06-1.12 4.8´10-9 1.09 1.07-1.11 3.0´10-18 

19p13.11 KLF2 rs34797592§ 19 16,417,198 T/C 11.82 1.09 1.05-1.13 8.2´10-6 1.09 1.05-1.13 1.2´10-5 1.09 1.06-1.12 4.2´10-10 
19q13.43 TRIM28 rs73068325 19 59,079,096 T/C 18.26 1.06 1.03-1.09 2.1´10-4 1.07 1.04-1.11 5.0´10-5 1.07 1.04-1.09 4.2´10-8 

20q13.12 TOX2;  
HNF4A rs6031311§ 20 42,666,475 T/C 75.91 1.07 1.04-1.10 1.7´10-6 1.05 1.02-1.08 7.6´10-4 1.06 1.04-1.08 6.8´10-9 

20q13.33 TNFRSF6B; 
RTEL1 rs2738783§,¶ 20 62,308,612 T/G 20.29 1.07 1.04-1.10 2.6´10-6 1.05 1.02-1.08 3.3´10-3 1.06 1.04-1.08 5.3´10-8 

Lead variant is the most associated variant at the locus. rsIDs based on NCBI dbSNP Build 150. Alleles are on the + strand. Chr.: Chromosome. RAF: Risk allele frequency, based 920 
on stage 2 data. OR, odds ratio estimate for the risk allele. All P-values reported in this table are based on fixed-effects inverse variance-weighted meta-analysis. 921 
*Indicates that variant or LD proxy (r2>0.7) was selected for our custom genotyping panel and formally replicates in the Stage 2 meta-analysis at a Bonferroni significance 922 
threshold of P < 7.8×10-6. 923 
§Indicates that variant or LD proxy (r2>0.7) was selected for our custom genotyping panel but did not attain Bonferroni significance in the Stage 2 meta-analysis. 924 
¶This SNP reached genome-wide significance in the combined (Stage 1 + Stage 2) sample-size weighted meta-analysis based on likelihood ratio test results (P = 4.9´10-8). 925 
 926 
 927 
 928 
 929 
 930 
 931 
 932 
 933 
 934 
 935 
 936 
 937 
 938 
 939 
 940 
 941 
 942 
 943 
 944 
 945 
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Table 2  Additional new conditionally independent association signals at known and newly identified CRC risk loci that reach genome-wide 946 
significance (P < 5´10-8) in the combined meta-analysis of up to 125,478 individuals. 947 

          Joint multiple-variant analysis 

Locus Nearby 
gene(s) 

rsID lead 
variant Chr. Position 

(Build 37) 
Alleles 

(risk/other) 
RAF 
(%) ORunconditional 95% CI Punconditional 

Conditioning 
variant(s) ORconditional 95% CI Pconditional 

Low-frequency variants 
11q13.4 POLD3 rs61389091 11 74,427,921 C/T 96.06 1.23 1.18-1.29 1.2´10-18 rs7121958*, 

rs7946853 
1.21 1.16-1.27 3.7´10-16 

Common variants 
2q33.1 SATB2 rs11884596 2 199,612,407 C/T 38.23 1.06 1.04-1.08 1.1´10-9 rs983402 1.06 1.04-1.07 3.6´10-9 
5p15.33 TERT; 

CLPTM1L 
rs78368589 5 1,240,204 T/C 5.97 1.14 1.10-1.18 9.4´10-12 rs2735940* 1.12 1.08-1.16 4.1´10-9 

5p13.1 LINC00603; 
PTGER4 

rs7708610 5 40,102,443 A/G 35.64 1.04 1.02-1.06 1.5´10-5 rs12514517* 1.06 1.04-1.08 3.8´10-9 

6p21.32 HLA-B; 
MICA; 
MICB; 
NFKBIL1; 
TNF 

rs2516420 6 31,449,620 C/T 92.63 1.10 1.06-1.13 1.3´10-7 rs9271695, 
rs116685461, 
rs116353863 

1.12 1.08-1.16 2.0´10-10 

8q24.21 MYC rs4313119 8 128,571,855 G/T 74.86 1.06 1.04-1.08 1.0´10-9 rs6983267*, 
rs7013278 

1.06 1.04-1.08 2.1´10-9 

12p13.32 CCND2 rs3217874 12 4,400,808 T/C 42.82 1.08 1.06-1.10 1.2´10-17 rs3217810*, 
rs35808169* 

1.06 1.04-1.08 2.4´10-9 

15q13.3 GREM1 rs17816465 15 33,156,386 A/G 20.55 1.07 1.04-1.09 6.8´10-9 rs2293581*, 
rs12708491* 

1.07 1.05-1.10 1.4´10-10 

20p12.3 BMP2 rs28488 20 6,762,221 T/C 63.88 1.06 1.04-1.08 2.6´10-11 rs189583*, 
rs4813802*, 
rs994308 

1.07 1.05-1.09 2.6´10-14 

20p12.3 BMP2 rs994308 20 6,603,622 C/T 59.39 1.08 1.06-1.10 4.8´10-18 rs189583*, 
rs4813802*, 
rs28488 

1.06 1.05-1.08 8.6´10-12 

Lead variant is the most associated variant at the locus in the conditional analysis. rsIDs based on NCBI dbSNP Build 150. Alleles are on the + strand. Chr.: Chromosome. RAF: 948 
Risk allele frequency, based on stage 2 data. OR, odds ratio estimates are for the risk allele. Conditioning variants are the lead variant of other conditionally independent 949 
association signals with P < 1´10-5 within 1-Mb of the new association signal. Because of extensive LD we used a 2-Mb distance for the MHC region (6p21.32). All lead variants 950 
for the new association signals are in linkage equilibrium with any previously reported CRC risk variants at the locus (r2 <0.10).  951 
*Indicates that the conditioning variant is either the index variant, or a variant in LD with the index variant reported in previous GWAS. Details and full results are provided in 952 
Supplementary Table 5. 953 
 954 
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ONLINE METHODS 955 

Study samples. 956 

After quality control (QC), this study included whole-genome sequencing (WGS) data for 1,439 957 

colorectal cancer (CRC) cases and 720 controls from 5 studies, and GWAS array data for 58,131 958 

CRC or advanced adenoma cases (3,674; 6.3% of cases) and 67,347 controls from 45 studies 959 

from GECCO, CORECT, and CCFR. The Stage 1 meta-analysis comprised existing genotyping 960 

data from 30 studies that were included in previously published CRC GWAS13,18,22. After QC, 961 

the Stage 1 meta-analysis included 34,869 cases and 29,051 controls. Study participants were 962 

predominantly of European ancestry (31,843 cases and 26,783 controls; 91.7% of participants). 963 

Because it was shown previously that the vast majority of known CRC risk variants are shared 964 

between Europeans and East Asians17, we included 3,026 cases and 2,268 controls of East Asian 965 

ancestry to increase power for discovery. The Stage 2 meta-analysis comprised newly generated 966 

genotype data involving 4 genotyping projects and 22 studies. After QC, the Stage 2 meta-967 

analysis included 23,262 cases and 38,296 controls, all of European ancestry. Studies, sample 968 

selection, and matching are described in the Supplementary Text. Supplementary Table 1 969 

provides details on sample numbers, and demographic characteristics of study participants. All 970 

participants provided written informed consent, and each study was approved by the relevant 971 

research ethics committee or institutional review board. Four normal colon mucosa biopsies for 972 

ATAC-seq were obtained from patients with a normal colon at colonoscopy at the Institut 973 

d’Investigació Biomèdica de Bellvitge (IDIBELL), Spain. Patients signed informed consent, and 974 

the protocol was approved by the Bellvitge Hospital Ethics Committee (Colscreen protocol 975 

PR084/16). 976 

 977 

Whole-genome sequencing. 978 

We performed low-pass WGS of 2,192 samples from 5 studies at the University of Washington 979 

Northwest Genomics Center (Seattle, WA, USA). Cases and controls were processed and 980 

sequenced together. Libraries were prepared with ThruPLEX DNA-seq kits (Rubicon Genomics) 981 

and paired-end sequencing performed using Illumina HiSeq 2500 sequencers. Reads were 982 

mapped to human reference genome (GRCh37 assembly) using Burrows-Wheeler aligner BWA 983 

v0.6.282. Fold genomic coverage averaged 5.3× (range: 3.8-8.6×). We used the GotCloud 984 

population-based multi-sample variant calling pipeline83 for post-processing of BAM files with 985 
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initial alignments, and to detect and call single nucleotide variants (SNVs) and short insertions 986 

and deletions (indels). After removing duplicated reads and recalibrating base quality scores, QC 987 

checks included sample contamination detection. Variants were jointly called across all samples. 988 

To identify high-quality sites, the GotCloud pipeline performs a two-step filtering process. First, 989 

lower quality variants are identified by applying individual variant quality statistic filters. Next, 990 

variants failing multiple filters are used as negative examples to train a support vector machine 991 

(SVM) classifier. Finally, we performed a haplotype-aware genotype refinement step via 992 

Beagle84 and ThunderVCF85 on the SVM-filtered VCF files. After further sample QC, we 993 

excluded samples with estimated DNA contamination >3% (16), duplicated samples (5) or 994 

related individuals (1), sex discrepancies (0), and samples with low concordance with GWAS 995 

array data (11). We checked for ancestry outliers by performing principal components analysis 996 

(PCA) after merging in data for shared, linkage disequilibrium (LD)-pruned SNVs for 1,092 997 

individuals from the 1000 Genomes Project86. After QC, sequences were available for 1,439 998 

CRC cases and 720 controls of European ancestry. 999 

 1000 

GWAS genotype data and quality control. 1001 

Details of genotyping and QC for studies included in the Stage 1 meta-analysis are described 1002 

elsewhere13,18,22. Supplementary Table 1 provides details of genotyping platforms used. Before 1003 

association analysis, we pooled individual-level genotype data of all Stage 1 studies for a subset 1004 

of SNPs to enable identification of unexpected duplicates and close relatives. We calculated 1005 

identity by descent (IBD) for each pair of samples using KING-robust87 and excluded duplicates 1006 

and individuals that are second-degree or more closely related. As part of Stage 2, 28,805 1007 

individuals from 19 studies were newly genotyped on a custom Illumina array based on the 1008 

Infinium OncoArray-500K26 and a panel of 15,802 successfully manufactured custom variants 1009 

(described in Supplementary Text). An additional 8,725 individuals from 5 studies were 1010 

genotyped on the Illumina HumanOmniExpressExome-8v1-2 array. Genotyping and calling for 1011 

both projects were performed at the Center for Inherited Disease Research (CIDR) at Johns 1012 

Hopkins University. Genotypic data that passed initial QC at CIDR subsequently underwent QC 1013 

at the University of Washington Genetic Analysis Center (UW GAC) using standardized 1014 

methods detailed in Laurie et al.88. The median call rate for the custom Infinium OncoArray-1015 

500K data was 99.97%, and error rate estimated from 301 sample duplicate pairs was 9.99e-7. A 1016 
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relatively low number of samples (246) had a missing call rate >2%, with the highest being 1017 

3.48%, and were included in analysis. For the HumanOmniExpressExome-8v1-2 data, median 1018 

call rate was 99.96%, and the error rate estimated from 179 sample duplicate pairs was 2.65e-6. 1019 

Thirty samples had a missing call rate >2%, with the highest being 3.79%, and were included in 1020 

analysis. We excluded samples with discrepancies between reported and genotypic sex based on 1021 

X chromosome heterozygosity and the means of sex chromosome probe intensities, unintentional 1022 

duplicates, and close relatives defined as individuals that are second-degree or more closely 1023 

related. After further excluding individuals of non-European ancestry as determined by PCA (see 1024 

below), the custom OncoArray data included in analysis comprised 11,852 CRC cases and 1025 

11,895 controls, and the HumanOmniExpressExome-8v1-2 array data included in analysis 1026 

comprised 4,439 CRC cases and 4,115 controls. Only variants passing QC were used for 1027 

imputation. We excluded variants failing CIDR technical filters or UW GAC quality filters, 1028 

which included missing call rate >2%, discordant calls in sample duplicates, and departures from 1029 

Hardy-Weinberg equilibrium (HWE) (P <1e-4) based on European-ancestry controls. The Stage 1030 

2 analysis also included genotype data from the CORSA study (Supplementary Text). In total, 1031 

2,354 individuals were genotyped using the Affymetrix Axiom Genome-Wide Human CEU 1 1032 

Array. We called genotypes using the AxiomGT1 algorithm. All samples had missing call rate 1033 

<3%. We excluded samples with discrepancies between reported and genotypic sex (20), close 1034 

relatives defined as individuals that are second-degree or more closely related (94), as inferred 1035 

using KING-robust87, and individuals of non-European ancestry (6) as inferred from PCA. After 1036 

QC, data included in analysis comprised 1,460 cases and 774 controls. Prior to phasing and 1037 

imputation, we filtered out SNPs with missing call rate >2%, or HWE P <1e-4. Imputed 1038 

genotype data were obtained from UK Biobank and QC and imputation are described 1039 

elsewhere89. A nested case-control dataset was constructed as described in the Supplementary 1040 

Text. We excluded individuals of non-European ancestry as inferred from PCA, and randomly 1041 

dropped one individual from each pair that were more closely related than third-degree relatives 1042 

as inferred using KING-robust. This resulted in excluding 137 samples. In total, 5,356 CRC 1043 

(5,004) or advanced adenoma (352) cases and 21,407 matched controls were included in the 1044 

replication analysis. 1045 

 1046 

Principal components analysis. 1047 
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After excluding close relatives, we performed PCA using PLINK1.990 on LD-pruned sets of 1048 

autosomal SNPs obtained by removing regions with extensive long-range LD91,92, SNPs with 1049 

minor allele frequency (MAF) <5%, or HWE P <1e-4, or any missingness, and carrying out LD 1050 

pruning using the PLINK option ‘-indep-pairwise 50 5 0.2’. To identify population outliers we 1051 

merged in 1,092 individuals from 1000 Genomes Project Phase III and performed PCA using the 1052 

intersection of variants93. 1053 

 1054 

Genotype imputation. 1055 

The 2,159 whole-genome sequences described above were used to create a phased imputation 1056 

reference panel. After estimating haplotypes for all GWAS array data sets using SHAPEIT294, 1057 

we used minimac395 to impute from this reference panel (19.6 million variants with minor allele 1058 

count (MAC) >1) into the GWAS datasets described above. We also imputed to the Haplotype 1059 

Reference Consortium (HRC) panel25 (39.2 million variants) using the University of Michigan 1060 

Imputation Server95. To improve imputation accuracy for Stage 1 data sets, phasing and 1061 

imputation were performed after pooling studies/genotype projects that used the same, or very 1062 

similar, genotyping platforms (Supplementary Table 1). For Stage 2, we performed phasing 1063 

and imputation separately for each genotyping project data set and imputed to the HCR panel. 1064 

 1065 

Statistical analyses. 1066 

Association testing of sequence data. 1067 

We tested variants with MAC ≥5 for CRC association using Firth’s bias-reduced logistic 1068 

regression as implemented in EPACTS (genome.sph.umich.edu/wiki/EPACTS) and adjusted for 1069 

sex, age, study, and 3 principal components (PCs) calculated from an LD-pruned set of 1070 

genotypes. We performed rare variant aggregate tests at the gene and enhancer level using the 1071 

Mixed effects Score Test (MiST)96. This unified test is a linear combination between 1072 

unidirectional burden and bidirectional variance component tests that performs best in terms of 1073 

statistical power across a range of architectures97. 1074 

 1075 

Association and meta-analysis. 1076 

Stage 1 comprised two large mega-analyses of pooled individual-level genotype data sets 1077 

(Supplementary Table 12). The four Stage 2 genotyping project data sets were analyzed 1078 
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separately. Within each data set, variants with an imputation accuracy r2 ≥0.3 and MAC ≥50 1079 

were tested for CRC association using the imputed genotype dosage in a logistic regression 1080 

model adjusted for age, sex, and study/genotyping project-specific covariates, including PCs to 1081 

adjust for population structure (Supplementary Table 12). To account for residual confounding 1082 

within CORSA, we tested association with each variant using a linear mixed model and kinship 1083 

matrix calculated from the data, as implemented in EMMAX98. To enable meta-analysis, we then 1084 

calculated approximate allelic log odds ratios (OR) and corresponding standard errors as 1085 

described in Cook et al.99. 1086 

Next, we combined association summary statistics across analyses via fixed-effects inverse 1087 

variance-weighted meta-analysis. Because Wald tests can be notably anti-conservative for rare 1088 

variant associations, we also performed likelihood ratio-based tests, followed by sample-size 1089 

weighted meta-analysis, as implemented in METAL100. In total, 16,900,397 variants were 1090 

analyzed. To examine residual population stratification, we inspected quantile-quantile plots of 1091 

test statistics (Supplementary Figure 8), and calculated genomic control inflation statistics 1092 

(λGC). λGC for the combined meta-analysis was 1.105, and for Stage 1 and 2 meta-analyses was 1093 

1.071 and 1.075, respectively. Because λGC increases with sample size for polygenic phenotypes, 1094 

even in the absence of confounding biases101, we investigated the effect of confounding due to 1095 

residual population stratification using LD score regression102. Because of limitations of LD 1096 

score regression, this analysis is restricted to common variants (MAF≥1%) for which λGC was 1097 

1.188 in the combined meta-analysis. The LD score regression intercept was 1.067, which is 1098 

substantially less than λGC, indicating at most a small contribution of bias and that inflation in χ2 1099 

statistics results mostly from polygenicity. We also calculated λ1,000 which is the equivalent 1100 

inflation statistic for a study with 1,000 cases and 1,000 controls103. For the combined meta-1101 

analysis, λ1000 was 1.004 and for both Stage 1 and 2 meta-analyses this was 1.003. 1102 

 1103 

Significance threshold for the replication genotyping experiment. 1104 

To protect against probe design failure, we built redundancy into the custom genotyping panel by 1105 

including LD proxies of independently associated variants selected for follow-up. To determine 1106 

the number of independent tests, we performed LD clumping of the 9,198 analyzed variants that 1107 

were selected for replication genotyping based on the Stage 1 meta-analysis, and that survived 1108 
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filters described above. Using an r2 threshold of 0.1 this translated to 6,438 independent tests and 1109 

a Bonferroni significance threshold of 0.05/6,438=7.8×10-6. 1110 

 1111 

Conditional and joint multiple-variant analysis. 1112 

To identify additional distinct association signals at CRC loci, we performed a series of 1113 

conditional meta-analyses. At each locus attaining P <5×10-8, we included the genotype dosage 1114 

for the variant showing the strongest statistical evidence for association in the region in the 1115 

combined meta-analysis, as an additional covariate in the respective logistic regression models. 1116 

Association summary statistics for each variant in the region were then combined across studies 1117 

by a fixed-effects meta-analysis. If at least one association signal attained a significance level of 1118 

P <1×10-5 in this meta-analysis, we performed a second round of conditional meta-analysis, 1119 

adding the variant showing the strongest statistical evidence for association in the region in the 1120 

first round of conditional meta-analysis as a covariate to the logistic regression models used in 1121 

the first round. We repeated this procedure and kept adding variants to the model until no 1122 

additional variants at the locus attained P <1×10-5. Finally, we performed a joint multiple-variant 1123 

analysis in which we jointly estimated the effects of variants selected in each step and tested for 1124 

each variant whether the P-value from the joint multiple-variant analysis (PJ) was <1×10-5. 1125 

Analyses were performed on 2-Mb windows centered on the most associated variant in the 1126 

unconditional analysis. If windows overlapped, we performed the analysis on the collapsed 1127 

genomic region. Because of extensive LD, we used a 4-Mb window for the MHC region. 1128 

 1129 

Definition of known loci. 1130 

We compiled a list of 62 previously reported genome-wide significant CRC association signals 1131 

from the literature (Supplementary Table 3). Because of improved power and coverage of our 1132 

study, we identified the most associated variant at each signal, and used these lead variants for 1133 

further analyses, rather than the previously reported index variant. 1134 

 1135 

Refinement of association signals. 1136 

To refine new association signals, we constructed credible sets that were 99% likely, based on 1137 

posterior probability, to contain the causal disease-associated SNP104. In brief, for each distinct 1138 

signal, we retained a candidate set of variants by identifying all analyzed variants with r2 ≥0.1 1139 
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with the most associated variant within a 2-Mb window centered on the most associated variant. 1140 

We calculated approximate Bayes’ factors (ABF)105 for each variant as: 1141 

 1142 

!"# = 1 − '	)*+,/.	1143 

 1144 

where r = 0.04/(s.e.2+0.04), z = β/s.e., and β and s.e. are the log OR estimate and its standard 1145 

error from the combined meta-analysis. For loci with multiple distinct signals, results are based 1146 

on conditional meta-analysis, adjusting for all other index variants in the region. We then 1147 

calculated the posterior probability of being causal as ABF/T where T is the sum of ABF values 1148 

over all candidate variants. Next, variants were ranked in decreasing order by posterior 1149 

probabilities and the 99% credible set was obtained by including variants with the highest 1150 

posterior probabilities until the cumulative posterior probability ≥99%. 1151 

 1152 

Functional genomic annotation. 1153 

To nominate variants for future laboratory follow-up, we performed bioinformatic analysis at 1154 

each new signal using our functional annotation database, and a custom UCSC analysis data hub. 1155 

Using ANNOVAR106, we annotated lead variants and variants in LD (r2 ≥0.4) with the lead 1156 

variant, relative to features pertaining to i) gene-centric function (PolyPhen2107), ii) genome-1157 

wide functional prediction scores (CADD108, DANN109, EigenPC110), iii) disease relatedness 1158 

(GWAS catalog46), and iv) CRC-relevant regulatory functions (enhancer, repressor, DNA 1159 

accessible, and transcription factor binding site (TFBS)111,112; Supplementary Table 13). 1160 

Supplementary Table 8 summarizes variant annotations relative to the CCDS Project113, and 1161 

reference genome GRCh37. Variants were maintained in Supplementary Table 8 if they met 1162 

any of the following conditions: DANN score ≥0.9, CADD phred score ≥20, Eigen-PC phred 1163 

score ≥17, PolyPhen2 “probably damaging”, “stop loss”, “stop gain”, “splicing”, or were 1164 

positioned in a predicted regulatory element. We visually inspected loci overlapping with CRC-1165 

relevant functional genomic annotations. Variants positioned in enhancers with aberrant CRC 1166 

activity were identified by comparing epigenomes of non-diseased colorectal tissues/colonic 1167 

crypt cells to epigenomes of primary CRC cell lines (data accessible at NCBI GEO database, 1168 

accession GSE77737). We prioritized target genes for loci with predicted regulatory function. 1169 

Evidence suggests that Topological Association Domains (TADs) can be used to map physical 1170 
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boundaries on gene promoter interactions with distal regulatory elements114–116. As such, we used 1171 

GMI12878 Hi-C Chromosome Conformation Capture data to identify gene promoters that were 1172 

in the same TADs as risk loci using the WashU Epigenome Browser 1173 

(https://epigenomegateway.wustl.edu/). Genes in this list were further prioritized based on 1174 

biological relevancy and expression quantitative trait loci (eQTL) data from Genotype-Tissue 1175 

Expression (GTEx)117 using HaploReg v4.1118. 1176 

 1177 

ATAC-seq assay. 1178 

We generated high resolution maps of DNA accessible regions in normal colon mucosa samples 1179 

using the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). Using the 1180 

updated omni-ATAC protocol for archival samples, we performed ATAC-seq in four colon 1181 

mucosa biopsies from the ICO-biobank taken from participants undergoing screening at 1182 

IDIBELL, Spain. Biopsies were cryopreserved by slow freezing using a solution of 10% DMSO, 1183 

90% media, and Mr. Frosty Cryo 1°C Freezing Containers (Thermo Scientific). ATAC-seq was 1184 

implemented as prescribed with two exceptions. Instead of dounce homogenizer we used a tissue 1185 

lyser and stainless bead system, pulverizing at 40Hz for 2 mins and pulsing at 50Hz for 10-20 1186 

seconds. Secondly, Illumina library quantification was performed using picogreen quantitation 1187 

and TapeStation instead of KAPA quantitative qPCR. Libraries were sequenced to an average of 1188 

25M paired end reads using Illumina HiSeq 2500. The ENCODE data processing pipeline was 1189 

implemented (https://github.com/kundajelab/atac_dnase_pipelines) aligning to hg19119. QC 1190 

results are summarized in Supplementary Table 14. 1191 

 1192 

Regulatory and functional information enrichment analysis. 1193 

We used GARFIELD74 to identify cell types, tissues, and functional genomic features relevant to 1194 

CRC risk. This method tests for enrichment of association in features primarily extracted from 1195 

ENCODE and Roadmap Epigenomics Project data, while accounting for sources of confounding, 1196 

including LD. We applied default settings and used the author-supplied data which is suitable for 1197 

analysis of GWAS results based on European-ancestry individuals. 1198 

 1199 

Pathway and gene set enrichment analysis. 1200 
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We used MAGENTA to test predefined gene sets (e.g., KEGG pathways) for enrichment for 1201 

CRC risk associations75. We used combined meta-analysis results as input and applied default 1202 

settings which included removing genes that fall in the MHC region from analysis. Enrichment 1203 

was tested at two gene P-value cutoffs: 95th and 75th percentiles of all gene P-values in the 1204 

genome. 1205 

 1206 

Estimation of contribution of rare variants to heritability. 1207 

We used the LD- and MAF-stratified component GREML (GREML-LDMS) method as 1208 

implemented in GCTA76 to estimate the proportion of variation in liability for CRC explained by 1209 

all imputed autosomal variants (i.e., estimate of narrow-sense heritability ℎ0.), and the proportion 1210 

contributed by rare variants (MAF ≤1%). Because of computational limitations we analyzed a 1211 

subset of 11,895 cases and 14,659 controls imputed to our WGS panel. We analyzed individual-1212 

level data for 17,649,167 imputed variants with MAC >3 and HWE test P ≥10-6. Following Yang 1213 

et al.76, we did not filter on imputation quality. In brief, we stratified variants into groups based 1214 

on MAF (boundaries at 0.001, 0.01, 0.1, 0.2, 0.3, 0.4) and mean LD score (boundaries at 1215 

quartiles) calculated as described in Yang et al.76. We then calculated genetic relationship 1216 

matrices (GRMs) for each of these 28 variant partitions and jointly estimated variance 1217 

components for these partitions, adjusting for age, sex, study, genotyping batch, and three 1218 

genotype PCs. From the variance component estimates and their variance-covariance matrix we 1219 

estimated the contribution of rare variants (MAF ≤1%) and common variants (MAF >1%), and 1220 

calculated standard errors using the delta method. We tested significance of the contribution of 1221 

rare variants using a likelihood ratio test. To calculate heritability on the underlying liability 1222 

scale we interpreted K as lifetime risk120 and used an estimate of 4.3% (Surveillance, 1223 

Epidemiology, and End Results Program (SEER) Cancer Statistics, 2011-2013). 1224 

 1225 

Familial relative risk explained by genetic variants. 1226 

We assumed a multiplicative model within and between variants and calculated the proportion of 1227 

familial relative risk (RR) explained by a given set of genetic variants as  123	45	5
123	46	

, where 78	is the 1228 

overall familial RR to first-degree relatives of cases. 79 is the familial RR due to variant : 1229 

calculated as 79 = ;5*5,<=5
(;5*5<=5),

, where @9	is the risk allele frequency for variant :, A9 = 1 − @9, and '9 1230 
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is the estimated per allele OR9,121. We adjusted the OR estimates of new association signals for 1231 

winner’s curse following Zhong and Prentice78. We represented previously identified association 1232 

signals by the variant showing the strongest statistical evidence of association in the combined 1233 

meta-analysis, and assumed that winner’s curse was negligible. We assumed 78	to be 2.2122. 1234 

Using the delta method, we computed the variance for the proportion of familial RR as follows: 1235 

 1236 

CD'('9)
9

[ 1
FGH	78	

1
79
2@9A9('9 − 1)
(@9'9 + A9)K

].. 1237 

 1238 

Absolute risk of CRC incidence and starting age of first screening. 1239 

We constructed a polygenic risk score (PRS) as a weighted sum of expected risk allele frequency 1240 

for common genetic variants, using the per allele OR for each variant as weights. OR estimates 1241 

for newly discovered variants were adjusted for winner’s curse to avoid potential inflation78. 1242 

Assuming all genetic variants are independent, let N denote a PRS constructed based on K 1243 

variants: N = OPQ9R
9ST , where OP	DUV	Q9	are the estimated OR and the number of risk alleles for 1244 

variant i. We assumed N	follows a normal distribution W(X, Y.), where the estimates of mean 1245 

and variance are computed as following: 1246 

X = OP×2×@P
R

9ST
and	Y. = OP.×2×@P×(1 − @P)

R

9ST
, 1247 

where  @P	is the risk allele frequency for variant : = 1,⋯ , _. Then the baseline hazard at each 1248 

age `, 78(`), is computed as following: 1249 

78(1) = 7∗(1) b(c) Vc
)d b(c)Vc 1250 

78(`) = 7∗(`) )c@	(− 78(:)efT
9ST )d) b(c)Vc

)c@	(− 78(:)efT
9ST )d) )db(c)Vc 	for	` = 2,⋯ ,100, 1251 

and 7∗(`) are the incidence rates for non-Hispanic whites who have not taken an endoscopy 1252 

before, derived from population incidence rates during 1992-2005 from the SEER Registry. 1253 

Using these baseline hazard rates, we estimated the 10-year absolute risk of developing CRC 1254 

given age and a PRS as previously described123. By setting a risk threshold as the average of the 1255 

10-year CRC risk for a 50-year old man (1.25%) and woman (0.68%), i.e., 1256 

(1.25%+0.68%)/2=0.97%, who have not previously received an endoscopy124, we estimated the 1257 
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recommended starting age of first screening given the PRS. Variants and OR estimates used in 1258 

these analyses are given in Supplementary Table 15. 1259 

 1260 

Data availability. 1261 

All whole-genome sequence data have been deposited at the database of Genotypes and 1262 

Phenotypes (dbGaP), which is hosted by the U.S. National Center for Biotechnology Information 1263 

(NCBI), under accession number phs001554.v1.p1. All custom Infinium OncoArray-500K array 1264 

data for the studies in the Stage 2 meta-analysis have been deposited at dbGaP under accession 1265 

number phs001415.v1.p1. All Illumina HumanOmniExpressExome-8v1-2 array data for the 1266 

studies in the Stage 2 meta-analysis have been deposited at dbGaP under accession number 1267 

phs001315.v1.p1. Genotype data for the studies included in the Stage 1 meta-analysis have been 1268 

deposited at dbGaP under accession number phs001078.v1.p1. The UK Biobank resource was 1269 
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