101 research outputs found

    On Silicon Carbide Grains as the Carrier of the 21 Micron Emission Feature in Post-Asymptotic Giant Branch Stars

    Get PDF
    The mysterious 21mu emission feature seen in 12 proto-planetary nebulae (PPNe) remains unidentified since its first detection in 1989. Over a dozen of candidate materials have been proposed within the past decade, but none of them has received general acceptance. Very recently, silicon carbide (SiC) grains with impurities were suggested to be the carrier of this enigmatic feature, based on recent laboratory data that doped SiC grains exhibit a resonance at \~21mu. This proposal gains strength from the fact that SiC is a common dust species in carbon-rich circumstellar envelopes. However, SiC dust has a strong vibrational band at ~11.3mu. We show in this Letter that in order to be consistent with the observed flux ratios of the 11.3mu feature to the 21mu feature, the band strength of the 21mu resonance has to be very strong, too strong to be consistent with current laboratory measurements. But this does not yet readily rule out the SiC hypothesis since recent experimental results have demonstrated that the 21mu resonance of doped SiC becomes stronger as the C impurity increases. Further laboratory measurements of SiC dust with high fractions of C impurity are urgently needed to test the hypothesis of SiC as the carrier of the 21mu feature.Comment: 14 pages, 3 figures, accepted for publication in ApJ

    Constraints on the structure of hot exozodiacal dust belts

    Get PDF
    Recent interferometric surveys of nearby main-sequence stars show a faint but significant near-infrared excess in roughly two dozen systems, i.e. around 10–30 per cent of stars surveyed. This excess is attributed to dust located in the immediate vicinity of the star, the origin of which is highly debated. We used previously published interferometric observations to constrain the properties and distribution of this hot dust. Considering both scattered radiation and thermal re-emission, we modelled the observed excess in nine of these systems. We find that grains have to be sufficiently absorbing to be consistent with the observed excess, while dielectric grains with pure silicate compositions fail to reproduce the observations. The dust should be located within ∌0.01–1 au from the star depending on its luminosity. Furthermore, we find a significant trend for the disc radius to increase with the stellar luminosity. The dust grains are determined to be below 0.2--0.5ÎŒm, but above 0.02--0.15ÎŒm in radius. The dust masses amount to (0.2–3.5) × 10⁻âč M⊕. The near-infrared excess is probably dominated by thermal re-emission, though a contribution of scattered light up to 35  per cent cannot be completely excluded. The polarization degree predicted by our models is always below 5  per cent, and for grains smaller than ∌0.2ÎŒm even below 1  per cent. We also modelled the observed near-infrared excess of another 10 systems with poorer data in the mid-infrared. The basic results for these systems appear qualitatively similar, yet the constraints on the dust location and the grain sizes are weaker

    Slow Relaxation and Phase Space Properties of a Conservative System with Many Degrees of Freedom

    Full text link
    We study the one-dimensional discrete Ί4\Phi^4 model. We compare two equilibrium properties by use of molecular dynamics simulations: the Lyapunov spectrum and the time dependence of local correlation functions. Both properties imply the existence of a dynamical crossover of the system at the same temperature. This correlation holds for two rather different regimes of the system - the displacive and intermediate coupling regimes. Our results imply a deep connection between slowing down of relaxations and phase space properties of complex systems.Comment: 14 pages, LaTeX, 10 Figures available upon request (SF), Phys. Rev. E, accepted for publicatio

    A Finite-Time Thermodynamics of Unsteady Fluid Flows

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Turbulent fluid has often been conceptualized as a transient thermodynamic phase. Here, a finite-time thermodynamics (FTT) formalism is proposed to compute mean flow and fluctuation levels of unsteady incompressible flows. The proposed formalism builds upon the Galerkin model framework, which simplifies a continuum 3D fluid motion into a finite-dimensional phase-space dynamics and, subsequently, into a thermodynamics energy problem. The Galerkin model consists of a velocity field expansion in terms of flow configuration dependent modes and of a dynamical system describing the temporal evolution of the mode coefficients. Each mode is treated as one thermodynamic degree of freedom, characterized by an energy level. The dynamical system approaches local thermal equilibrium (LTE) where each mode has the same energy if it is governed only by internal (triadic) mode interactions. However, in the generic case of unsteady flows, the full system approaches only partial LTE with unequal energy levels due to strongly mode-dependent external interactions. The FTT model is first illustrated by a traveling wave governed by a 1D Burgers equation. It is then applied to two flow benchmarks: the relatively simple laminar vortex shedding, which is dominated by two eigenmodes, and the homogeneous shear turbulence, which has been modeled with 1459 modes

    Clustering of vacancy defects in high-purity semi-insulating SiC

    Get PDF
    Positron lifetime spectroscopy was used to study native vacancy defects in semi-insulating silicon carbide. The material is shown to contain (i) vacancy clusters consisting of 4--5 missing atoms and (ii) Si vacancy related negatively charged defects. The total open volume bound to the clusters anticorrelates with the electrical resistivity both in as-grown and annealed material. Our results suggest that Si vacancy related complexes compensate electrically the as-grown material, but migrate to increase the size of the clusters during annealing, leading to loss of resistivity.Comment: 8 pages, 5 figure

    Geometric Approach to Lyapunov Analysis in Hamiltonian Dynamics

    Get PDF
    As is widely recognized in Lyapunov analysis, linearized Hamilton's equations of motion have two marginal directions for which the Lyapunov exponents vanish. Those directions are the tangent one to a Hamiltonian flow and the gradient one of the Hamiltonian function. To separate out these two directions and to apply Lyapunov analysis effectively in directions for which Lyapunov exponents are not trivial, a geometric method is proposed for natural Hamiltonian systems, in particular. In this geometric method, Hamiltonian flows of a natural Hamiltonian system are regarded as geodesic flows on the cotangent bundle of a Riemannian manifold with a suitable metric. Stability/instability of the geodesic flows is then analyzed by linearized equations of motion which are related to the Jacobi equations on the Riemannian manifold. On some geometric setting on the cotangent bundle, it is shown that along a geodesic flow in question, there exist Lyapunov vectors such that two of them are in the two marginal directions and the others orthogonal to the marginal directions. It is also pointed out that Lyapunov vectors with such properties can not be obtained in general by the usual method which uses linearized Hamilton's equations of motion. Furthermore, it is observed from numerical calculation for a model system that Lyapunov exponents calculated in both methods, geometric and usual, coincide with each other, independently of the choice of the methods.Comment: 22 pages, 14 figures, REVTeX

    An evaluation of Bradfordizing effects

    Get PDF
    The purpose of this paper is to apply and evaluate the bibliometric method Bradfordizing for information retrieval (IR) experiments. Bradfordizing is used for generating core document sets for subject-specific questions and to reorder result sets from distributed searches. The method will be applied and tested in a controlled scenario of scientific literature databases from social and political sciences, economics, psychology and medical science (SOLIS, SoLit, USB Köln Opac, CSA Sociological Abstracts, World Affairs Online, Psyndex and Medline) and 164 standardized topics. An evaluation of the method and its effects is carried out in two laboratory-based information retrieval experiments (CLEF and KoMoHe) using a controlled document corpus and human relevance assessments. The results show that Bradfordizing is a very robust method for re-ranking the main document types (journal articles and monographs) in today’s digital libraries (DL). The IR tests show that relevance distributions after re-ranking improve at a significant level if articles in the core are compared with articles in the succeeding zones. The items in the core are significantly more often assessed as relevant, than items in zone 2 (z2) or zone 3 (z3). The improvements between the zones are statistically significant based on the Wilcoxon signed-rank test and the paired T-Test

    Collisions of small ice particles under microgravity conditions - II. Does the chemical composition of the ice change the collisional properties?

    Get PDF
    Context. Understanding the collisional properties of ice is important for understanding both the early stages of planet formation and the evolution of planetary ring systems. Simple chemicals such as methanol and formic acid are known to be present in cold protostellar regions alongside the dominant water ice; they are also likely to be incorporated into planets which form in protoplanetary disks, and planetary ring systems. However, the effect of the chemical composition of the ice on its collisional properties has not yet been studied.Aims. Collisions of 1.5 cm ice spheres composed of pure crystalline water ice, water with 5% methanol, and water with 5% formic acid were investigated to determine the effect of the ice composition on the collisional outcomes.Methods. The collisions were conducted in a dedicated experimental instrument, operated under microgravity conditions, at relative particle impact velocities between 0.01 and 0.19 ms-1, temperatures between 131 and 160 K and a pressure of around 10-5Results. A range of coefficients of restitution were found, with no correlation between this and the chemical composition, relative impact velocity, or temperature.Conclusions. We conclude that the chemical composition of the ice (at the level of 95% water ice and 5% methanol or formic acid) does not affect the collisional properties at these temperatures and pressures due to the inability of surface wetting to take place. At a level of 5% methanol or formic acid, the structure is likely to be dominated by crystalline water ice, leading to no change in collisional properties. The surface roughness of the particles is the dominant factor in explaining the range of coefficients of restitution

    The dusty AGB star RS CrB: first mid-infrared interferometric observations with the Keck Telescopes

    Full text link
    We report interferometric observations of the semi-regular variable star RS CrB, a red giant with strong silicate emission features. The data were among the first long baseline mid-infrared stellar fringes obtained between the Keck telescopes, using parts of the new nulling beam combiner. The light was dispersed by a low-resolution spectrometer, allowing simultaneous measurement of the source visibility and intensity spectra from 8 to 12 microns. The interferometric observations allow a non-ambiguous determination of the dust shell spatial scale and relative flux contribution. Using a simple spherically-symmetric model, in which a geometrically thin shell surrounds the stellar photosphere, we find that ~30% to ~70% of the overall mid-infrared flux - depending on the wavelength - originates from 7-8 stellar radii. The derived shell opacity profile shows a broad peak around 11 microns (tau ~ 0.06), characteristic of Mg-rich silicate dust particles.Comment: Accepted for publication in ApJ Letter

    The Spitzer Spectroscopic Survey of S-type Stars

    Get PDF
    S-type AGB stars are thought to be in the transitional phase between M-type and C-type AGB stars. Because of their peculiar chemical composition, one may expect a strong influence of the stellar C/O ratio on the molecular chemistry and the mineralogy of the circumstellar dust. In this paper, we present a large sample of 87 intrinsic galactic S-type AGB stars, observed at infrared wavelengths with the Spitzer Space Telescope, and supplemented with ground-based optical data. On the one hand, we derive the stellar parameters from the optical spectroscopy and photometry, using a grid of model atmospheres. On the other, we decompose the infrared spectra to quantify the flux-contributions from the different dust species. Finally, we compare the independently determined stellar parameters and dust properties. For the stars without significant dust emission, we detect a strict relation between the presence of SiS absorption in the Spitzer spectra and the C/O ratio of the stellar atmosphere. These absorption bands can thus be used as an additional diagnostic for the C/O ratio. For stars with significant dust emission, we define three groups, based on the relative contribution of certain dust species to the infrared flux. We find a strong link between group-membership and C/O ratio. We show that these groups can be explained by assuming that the dust-condensation can be cut short before silicates are produced, while the remaining free atoms and molecules can then form the observed magnesium sulfides or the carriers of the unidentified 13 and 20 micron features. Finally, we present the detection of emission features attributed to molecules and dust characteristic to C-type stars, such as molecular SiS, hydrocarbons and magnesium sulfide grains. We show that we often detect magnesium sulfides together with molecular SiS and we propose that it is formed by a reaction of SiS molecules with Mg.Comment: Accepted for publication in A&
    • 

    corecore