10 research outputs found

    Does sex matter? Gender-specific responses to forest fragmentation in Neotropical bats

    Get PDF
    Understanding the consequences of habitat modification on wildlife communities is central to the development of conservation strategies. However, albeit male and female individuals of numerous species are known to exhibit differences in habitat use, sex-specific responses to habitat modification remain little explored. Here, we used a landscape-scale fragmentation experiment to assess, separately for males and females, the effects of fragmentation on the abundance of Carollia perspicillata and Rhinophylla pumilio, two widespread Neotropical frugivorous bats. We predicted that sex-specific responses would arise from higher energetic requirements from pregnancy and lactation in females. Analyses were conducted independently for each season, and we further investigated the joint responses to local and landscape-scale metrics of habitat quality, composition, and configuration. Although males and females responded similarly to a fragmentation gradient composed by continuous forest, fragment interiors, edges, and matrix habitats, we found marked differences between sexes in habitat use for at least one of the seasons. Whereas the sex ratio varied little in continuous forest and fragment interiors, females were found to be more abundant than males in edge and matrix habitats. This difference was more prominent in the dry season, the reproductive season of both species. For both species, abundance responses to local-and landscape-scale predictors differed between sexes and again, differences were more pronounced in the dry season. The results suggest considerable sex-mediated responses to forest disruption and degradation in tropical bats and complement our understanding of the impacts of fragmentation on tropical forest vertebrate communities. Abstract in Portuguese is available with online material.Peer reviewe

    Consequences of a large-scale fragmentation experiment for Neotropical bats : disentangling the relative importance of local and landscape-scale effects

    Get PDF
    Context Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management. Objectives We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient. Methods We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics. Results Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats. Conclusions Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat

    Enhancing sampling design in mist-net bat surveys by accounting for sample size optimization

    Get PDF
    The advantages of mist-netting, the main technique used in Neotropical bat community studies to date, include logistical implementation, standardization and sampling representativeness. Nonetheless, study designs still have to deal with issues of detectability related to how different species behave and use the environment. Yet there is considerable sampling heterogeneity across available studies in the literature. Here, we approach the problem of sample size optimization. We evaluated the common sense hypothesis that the first six hours comprise the period of peak night activity for several species, thereby resulting in a representative sample for the whole night. To this end, we combined re-sampling techniques, species accumulation curves, threshold analysis, and community concordance of species compositional data, and applied them to datasets of three different Neotropical biomes (Amazonia, Atlantic Forest and Cerrado). We show that the strategy of restricting sampling to only six hours of the night frequently results in incomplete sampling representation of the entire bat community investigated. From a quantitative standpoint, results corroborated the existence of a major Sample Area effect in all datasets, although for the Amazonia dataset the six-hour strategy was significantly less species-rich after extrapolation, and for the Cerrado dataset it was more efficient. From the qualitative standpoint, however, results demonstrated that, for all three datasets, the identity of species that are effectively sampled will be inherently impacted by choices of sub-sampling schedule. We also propose an alternative six-hour sampling strategy (at the beginning and the end of a sample night) which performed better when resampling Amazonian and Atlantic Forest datasets on bat assemblages. Given the observed magnitude of our results, we propose that sample representativeness has to be carefully weighed against study objectives, and recommend that the trade-off between logistical constraints and additional sampling performance should be carefully evaluated

    Compilação atualizada das espécies de morcegos (Chiroptera) para a Amazônia Brasileira

    Full text link

    Activity of the insectivorous bat Pteronotus parnellii

    No full text
    Riparian areas often are assumed to be necessary sites for foraging by insectivorous bats because of high insect availability and ease of movement and echolocation in the forest. However, effects of vegetation clutter and insect availability on bat activity have not been compared between riparian and nonriparian areas. We used autonomous recorders to evaluate the effects of vegetation structure, insect mass, and assemblage composition on the activity of the aerial insectivorous bat Pteronotus parnellii along stream channels and nonriparian areas in a tropical rainforest in central Brazilian Amazonia. We quantified vegetation clutter using horizontal photographs, captured nocturnal insects with light traps, and recorded bat activity for 110 nights (1,320 h) in 22 sampling plots. Pteronotus parnellii was more active in sites with dense understory vegetation, which were more common away from riparian zones. Bat activity was related to insect availability (mass and composition), independent of the habitat type. Ability to detect insects on vegetation and avoid obstacles should not restrict the activity of P. parnellii in cluttered sites. This suggests that mass and species composition of insects had stronger influences on habitat use than did vegetation clutter. Pteronotus parnellii probably selects cluttered places as feeding sites due to the availability of higher quality prey. © 2015 American Society of Mammalogists

    Supplementary Material for: Thrombolysis for acute wake-up and unclear onset strokes with alteplase at 0.6 mg/kg in clinical practice: THAWS2 Study

    No full text
    Introduction: The aim of this study was to determine the safety and efficacy of intravenous (IV) alteplase at 0.6 mg/kg for patients with acute wake-up or unclear onset strokes in clinical practice. Methods: This multicenter observational study enrolled acute ischemic stroke patients with last-known-well time >4.5 h who had mismatch between DWI and FLAIR and were treated with IV alteplase. The safety outcomes were symptomatic intracranial hemorrhage (sICH) after thrombolysis, all-cause deaths and all adverse events. The efficacy outcomes were favorable outcome defined as an mRS score of 0–1 or recovery to the same mRS score as the premorbid score, complete independence defined as an mRS score of 0–1 at 90 days, and change in NIHSS at 24 h from baseline. Results: Sixty-six patients (35 females; mean age, 74±11 years; premorbid complete independence, 54 [82%]; median NIHSS on admission, 11) were enrolled at 15 hospitals. Two patients (3%) had sICH. Median NIHSS changed from 11 (IQR, 6.75–16.25) at baseline to 5 (3–12.25) at 24 h after alteplase initiation (change, –4.8±8.1). At discharge, 31 patients (47%) had favorable outcome and 29 (44%) had complete independence. None died within 90 days. Twenty-three (35%) also underwent mechanical thrombectomy (no sICH, NIHSS change of –8.5±7.3), of whom 11 (48%) were completely independent at discharge. Conclusions: In real-world clinical practice, IV alteplase for unclear onset stroke patients with DWI-FLAIR mismatch provided safe and efficacious outcomes comparable to those in previous trials. Additional mechanical thrombectomy was performed safely in them
    corecore