2,054 research outputs found

    The Large Aperture GRB Observatory

    Full text link
    The Large Aperture GRB Observatory (LAGO) is aiming at the detection of the high energy (around 100 GeV) component of Gamma Ray Bursts, using the single particle technique in arrays of Water Cherenkov Detectors (WCD) in high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). WCD at high altitude offer a unique possibility of detecting low gamma fluxes in the 10 GeV - 1 TeV range. The status of the Observatory and data collected from 2007 to date will be presented.Comment: 4 pages, proceeding of 31st ICRC 200

    Water Cherenkov Detectors response to a Gamma Ray Burst in the Large Aperture GRB Observatory

    Full text link
    In order to characterise the behaviour of Water Cherenkov Detectors (WCD) under a sudden increase of 1 GeV - 1 TeV background photons from a Gamma Ray Burst (GRB), simulations were conducted and compared to data acquired by the WCD of the Large Aperture GRB Observatory (LAGO). The LAGO operates arrays of WCD at high altitude to detect GRBs using the single particle technique. The LAGO sensitivity to GRBs is derived from the reported simulations of the gamma initiated particle showers in the atmosphere and the WCD response to secondaries.Comment: 5 pages, proceeding of the 31st ICRC 200

    The impact of surgical practice on oncological outcomes in robot-assisted radical hysterectomy for early-stage cervical cancer, Spanish National Registry

    Get PDF
    Minimal invasive surgery (MIS) has been associated with lower disease-free survival than open surgery among women who underwent radical hysterectomy for early-stage cervical cancer. However, the mechanisms by which MIS increases mortality in cervical cancer remain uncertain. We aimed to determine if surgical practice among centers using robotic surgery has an impact on oncological outcomes. We evaluated 215 women with early-stage cervical cancer (≤IB1 or IIA1, FIGO 2009) who underwent robot-assisted radical hysterectomy in five Spanish tertiary centers between 2009 and 2018. A higher surgical volume, higher participation in clinical trials, higher rate of MRI use for diagnosis, greater use of sentinel lymph node biopsies, and a favorable learning curve with low rates of early recurrences were observed for the centers with better oncological outcomes. These factors might have a significant impact on oncological outcomes in all surgical approaches. Abstract: This study aimed to assess whether surgical practice had a significant impact on oncological outcomes among women who underwent robot-assisted radical hysterectomy for early-stage cervical cancer (≤IB1 or IIA1, FIGO 2009). The secondary objective was to audit the pre-surgical quality indicators (QI) proposed by the European Society of Gynaecological Oncology (ESGO). The top 5 of 10 centers in Spain and Portugal were included in the analysis. The hospitals were divided into group A (n = 118) and group B (n = 97), with recurrence rates of 10%, respectively. After balancing both groups using the propensity score, the ORs for all events were higher and statistically significant for group B (recurrences OR = 1.23, 95% CI = 1.13-1.15, p-value = 0.001; death OR = 1.10, 95% CI = 1.02-1.18, p-value = 0.012; disease-specific mortality ORr = 1.11, 95% CI = 1.04-1.19, p-value = 0.002). A higher surgical volume, higher participation in clinical trials, higher rate of MRI use for diagnosis, greater use of sentinel lymph node biopsies, and a favorable learning curve with low rates of early recurrences were observed among the centers with better oncological outcomes. These factors might have a significant impact on oncological outcomes not only after robot-assisted surgery, but also after laparoscopies and open surgeries in the treatment of cervical cancer

    Operations of and Future Plans for the Pierre Auger Observatory

    Full text link
    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Get PDF
    We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10^18 eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/- 0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.Comment: Accepted for publication by PR

    Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E>Eth=5.5×1019E>E_{th}=5.5\times 10^{19} eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E>EthE>E_{th} are heavy nuclei with charge ZZ, the proton component of the sources should lead to excesses in the same regions at energies E/ZE/Z. We here report the lack of anisotropies in these directions at energies above Eth/ZE_{th}/Z (for illustrative values of Z=6, 13, 26Z=6,\ 13,\ 26). If the anisotropies above EthE_{th} are due to nuclei with charge ZZ, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies

    Chance and necessity in the genome evolution of endosymbiotic bacteria of insects

    Full text link
    [EN] An open question in evolutionary biology is how does the selection¿drift balance determine the fates of biological interactions. We searched for signatures of selection and drift in genomes of five endosymbiotic bacterial groups known to evolve under strong genetic drift. Although most genes in endosymbiotic bacteria showed evidence of relaxed purifying selection, many genes in these bacteria exhibited stronger selective constraints than their orthologs in free-living bacterial relatives. Remarkably, most of these highly constrained genes had no role in the host¿symbiont interactions but were involved in either buffering the deleterious consequences of drift or other host-unrelated functions, suggesting that they have either acquired new roles or their role became more central in endosymbiotic bacteria. Experimental evolution of Escherichia coli under strong genetic drift revealed remarkable similarities in the mutational spectrum, genome reduction patterns and gene losses to endosymbiotic bacteria of insects. Interestingly, the transcriptome of the experimentally evolved lines showed a generalized deregulation of the genome that affected genes encoding proteins involved in mutational buffering, regulation and amino acid biosynthesis, patterns identical to those found in endosymbiotic bacteria. Our results indicate that drift has shaped endosymbiotic associations through a change in the functional landscape of bacterial genes and that the host had only a small role in such a shiftThis work was supported by Science Foundation Ireland (12/IP/1637) and grants from the Spanish Ministerio de Economia y Competitividad (MINECO-FEDER; BFU2012-36346 and BFU2015-66073-P) to MAF. DAP and CT were supported by Juan de la Cierva fellowships from MINECO (references: JCI-2011-11089 and JCA-2012-14056, respectively). DAP is supported by funds from the University of Nevada, Reno, NV, USA.Sabater-Muñoz, B.; Toft, C.; Alvarez-Ponce, D.; Fares Riaño, MA. (2017). Chance and necessity in the genome evolution of endosymbiotic bacteria of insects. The ISME Journal. 11(6):1291-1304. https://doi.org/10.1038/ismej.2017.18S12911304116Aguilar-Rodriguez J, Sabater-Munoz B, Montagud-Martinez R, Berlanga V, Alvarez-Ponce D, Wagner A et al. (2016). The molecular chaperone DnaK is a source of mutational robustness. Genome Biol Evol 8: 2979–2991.Alvarez-Ponce D, Sabater-Munoz B, Toft C, Ruiz-Gonzalez MX, Fares MA . (2016). Essentiality is a strong determinant of protein rates of evolution during mutation accumulation experiments in Escherichia coli. Genome Biol Evol 8: 2914–2927.Anders S, Huber W . (2010). Differential expression analysis for sequence count data. Genome Biol 11: R106.Archibald J . (2014) One Plus One Equals One: Symbiosis and the Evolution of Complex Life. Oxford University Press: Oxford, UK.Aussel L, Loiseau L, Hajj Chehade M, Pocachard B, Fontecave M, Pierrel F et al. (2014). ubiJ, a new gene required for aerobic growth and proliferation in macrophage, is involved in coenzyme Q biosynthesis in Escherichia coli and Salmonella enterica serovar Typhimurium. J Bacteriol 196: 70–79.Baumann P, Baumann L, Clark MA . (1996). Levels of Buchnera aphidicola chaperonin groEL during growth of the aphid Schizaphis graminum. Curr Microbiol 32: 7.Benjamini Y, Yekutieli Y . (2005). False discovery rate controlling confidence intervals for selected parameters. J Am Stat Assoc 100: 10.Bennett GM, Moran NA . (2015). Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci USA 112: 10169–10176.Bermingham J, Rabatel A, Calevro F, Vinuelas J, Febvay G, Charles H et al. (2009). Impact of host developmental age on the transcriptome of the symbiotic bacterium Buchnera aphidicola in the pea aphid (Acyrthosiphon pisum. Appl Environ Microbiol 75: 7294–7297.Bogumil D, Dagan T . (2010). Chaperonin-dependent accelerated substitution rates in prokaryotes. Genome Biol Evol 2: 602–608.Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S et al. (2009). AmiGO: online access to ontology and annotation data. Bioinformatics 25: 288–289.Chen Z, Wang Y, Li Y, Li Y, Fu N, Ye J et al. (2012). Esre: a novel essential non-coding RNA in Escherichia coli. FEBS Lett 586: 1195–1200.Clark JW, Hossain S, Burnside CA, Kambhampati S . (2001). Coevolution between a cockroach and its bacterial endosymbiont: a biogeographical perspective. Proc Biol Sci 268: 393–398.Dale C, Wang B, Moran N, Ochman H . (2003). Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration. Mol Biol Evol 20: 1188–1194.Deatherage DE, Barrick JE . (2014). Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol 1151: 165–188.Douglas AE . (2003). The nutritional physiology of aphids. Adv Insect Physiol 31: 68.Fares MA, Barrio E, Sabater-Munoz B, Moya A . (2002a). The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. Mol Biol Evol 19: 1162–1170.Fares MA, Ruiz-Gonzalez MX, Moya A, Elena SF, Barrio E . (2002b). Endosymbiotic bacteria: groEL buffers against deleterious mutations. Nature 417: 398.Gancedo C, Flores CL, Gancedo JM . (2016). The expanding landscape of moonlighting proteins in yeasts. Microbiol Mol Biol Rev 80: 765–777.Gerardo NM, Altincicek B, Anselme C, Atamian H, Barribeau SM, de Vos M et al. (2010). Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol 11: R21.Gomez-Valero L, Latorre A, Silva FJ . (2004). The evolutionary fate of nonfunctional DNA in the bacterial endosymbiont Buchnera aphidicola. Mol Biol Evol 21: 2172–2181.Gomez-Valero L, Silva FJ, Christophe Simon J, Latorre A . (2007). Genome reduction of the aphid endosymbiont Buchnera aphidicola in a recent evolutionary time scale. Gene 389: 87–95.Gonzalez-Domenech CM, Belda E, Patino-Navarrete R, Moya A, Pereto J, Latorre A . (2012). Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroaches. BMC Microbiol 12 (Suppl 1): S5.Hansen AK, Moran NA . (2011). Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proc Natl Acad Sci USA 108: 2849–2854.Hansen AK, Moran NA . (2014). The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23: 1473–1496.Henderson B, Fares MA, Lund PA . (2013). Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Philos Soc 88: 955–987.Humphreys NJ, Douglas AE . (1997). Partitioning of symbiotic bacteria between generations of an insect: a quantitative study of a Buchnera sp. in the pea aphid (Acyrthosiphon pisum reared at different temperatures. Appl Environ Microbiol 63: 3294–3296.International Aphid Genomics Consortium. (2010). Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8: e1000313.Kadibalban AS, Bogumil D, Landan G, Dagan T . (2016). DnaK-dependent accelerated evolutionary rate in prokaryotes. Genome Biol Evol 8: 1590–1599.Katoh K, Standley DM . (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780.Kelkar YD, Ochman H . (2013). Genome reduction promotes increase in protein functional complexity in bacteria. Genetics 193: 303–307.Koga R, Meng XY, Tsuchida T, Fukatsu T . (2012). Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte-embryo interface. Proc Natl Acad Sci USA 109: E1230–E1237.Kuo CH, Moran NA, Ochman H . (2009). The consequences of genetic drift for bacterial genome complexity. Genome Res 19: 1450–1454.Kuo CH, Ochman H . (2009). Deletional bias across the three domains of life. Genome Biol Evol 1: 145–152.Law R, Lewis DH . (1983). Biotic environments and the maintenance of sex-some evidence from mutualistic symbioses. Biol J Linnean Soc 20: 28.Liu XD, Xie L, Wei Y, Zhou X, Jia B, Liu J et al. (2014). Abiotic stress resistance, a novel moonlighting function of ribosomal protein RPL44 in the halophilic fungus Aspergillus glaucus. Appl Environ Microbiol 80: 4294–4300.Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M et al. (2012). RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 40: W622–W627.Macdonald SJ, Lin GG, Russell CW, Thomas GH, Douglas AE . (2012). The central role of the host cell in symbiotic nitrogen metabolism. Proc Biol Sci 279: 2965–2973.McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA et al. (2013). Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res 41: e140.McCutcheon JP, Moran NA . (2012). Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10: 13–26.McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE et al. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110: 3229–3236.Mira A, Ochman H, Moran NA . (2001). Deletional bias and the evolution of bacterial genomes. Trends Genet 17: 589–596.Moran NA . (1996). Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93: 2873–2878.Moran NA, Dunbar HE, Wilcox JL . (2005). Regulation of transcription in a reduced bacterial genome: nutrient-provisioning genes of the obligate symbiont Buchnera aphidicola. J Bacteriol 187: 4229–4237.Moran NA, McCutcheon JP, Nakabachi A . (2008). Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42: 165–190.Moran NA, McLaughlin HJ, Sorek R . (2009). The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323: 379–382.Nakabachi A, Ishida K, Hongoh Y, Ohkuma M, Miyagishima SY . (2014). Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Curr Biol 24: R640–R641.Nilsson AI, Koskiniemi S, Eriksson S, Kugelberg E, Hinton JC, Andersson DI . (2005). Bacterial genome size reduction by experimental evolution. Proc Natl Acad Sci USA 102: 12112–12116.Patino-Navarrete R, Moya A, Latorre A, Pereto J . (2013). Comparative genomics of Blattabacterium cuenoti: the frozen legacy of an ancient endosymbiont genome. Genome Biol Evol 5: 351–361.Pettersson ME, Berg OG . (2007). Muller's ratchet in symbiont populations. Genetica 130: 199–211.Price DR, Feng H, Baker JD, Bavan S, Luetje CW, Wilson AC . (2014). Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts. Proc Natl Acad Sci USA 111: 320–325.Reyes-Prieto M, Vargas-Chavez C, Latorre A, Moya A . (2015). SymbioGenomesDB: a database for the integration and access to knowledge on host-symbiont relationships. Database 2015: bav109 (1–8).Robinson MD, McCarthy DJ, Smyth GK . (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.Sabater-Muñoz B, Prats-Escriche M, Montagud-Martinez R, Lopez-Cerdan A, Toft C, Aguilar-Rodriguez J et al. (2015). Fitness trade-offs determine the role of the molecular chaperonin groel in buffering mutations. Mol Biol Evol 32: 2681–2693.Schlicker A, Domingues FS, Rahnenfuhrer J, Lengauer T . (2006). A new measure for functional similarity of gene products based on Gene Ontology. BMC Bioinformatics 7: 302.Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H . (2000). Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407: 81–86.Supek F, Bosnjak M, Skunca N, Smuc T . (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6: e21800.Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ et al. (2002). 50 million years of genomic stasis in endosymbiotic bacteria. Science 296: 2376–2379.Toft C, Fares MA . (2008). The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes. Mol Biol Evol 25: 2069–2076.van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U et al. (2003). Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100: 581–586.Wernegreen JJ . (2002). Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3: 850–861.Wernegreen JJ . (2011). Reduced selective constraint in endosymbionts: elevation in radical amino acid replacements occurs genome-wide. PLoS One 6: e28905.Williams TA, Fares MA . (2010). The effect of chaperonin buffering on protein evolution. Genome Biol Evol 2: 609–619.Yang Z . (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591
    corecore