1,719 research outputs found

    La guerre du Golfe, la presse et les cartes en Équateur: la banalisation d'un conflit multinational (janvier 1991)

    Get PDF
    Cette première guerre retransmise «en direct» par les chaînes de télévision du monde entier — ce qui n’exclut pas la censure —, se caractérise par la quasi-unicité des sources d’information primaire, la recherche du sensationnalisme et la banalisation d’affrontements multinationaux. Le dépouillement des deux principaux quotidiens équatoriens permet de lier le volume d’information aux phases des hostilités et d’analyser le langage cartographique et les messages à transmettre à l’humanité

    Intégration régionale et politique des outre-mers

    Get PDF
    Grâce à ses outre-mers, qui lui apportent 96% de sa zone économique exclusive, la France dispose du troisième domaine maritime du monde et assure une présence sur tous les océans. Cependant, les outre-mers ne jouent plus qu'un rôle mineur dans la politique des océans. Ce paradoxe s'explique en partie par les difficultés qu'ils rencontrent à s'insérer dans les échanges internationaux et à s'intégrer aux organisations régionales. Les différences de niveaux de développement socioéconomique avec les pays voisins contribuent à isoler les outre-mers dans leur environnement immédiat

    Discovery of interstellar mercapto radicals (SH) with the GREAT instrument on SOFIA

    Full text link
    We report the first detection of interstellar mercapto radicals, obtained along the sight-line to the submillimeter continuum source W49N. We have used the GREAT instrument on SOFIA to observe the 1383 GHz Doublet Pi 3/2 J = 5/2 - 3/2 lambda doublet in the upper sideband of the L1 receiver. The resultant spectrum reveals SH absorption in material local to W49N, as well as in foreground gas, unassociated with W49N, that is located along the sight-line. For the foreground material at velocities in the range 37 - 44 km/s with respect to the local standard of rest, we infer a total SH column density ~ 2.6 E+12 cm-2, corresponding to an abundance of ~ 7 E-9 relative to H2, and yielding an SH/H2S abundance ratio ~ 0.13. The observed SH/H2S abundance ratio is much smaller than that predicted by standard models for the production of SH and H2S in turbulent dissipation regions and shocks, and suggests that the endothermic neutral-neutral reaction SH + H2 -> H2S + H must be enhanced along with the ion-neutral reactions believed to produce CH+ and SH+ in diffuse molecular clouds.Comment: Accepted for publication in Astronomy and Astrophysics (SOFIA/GREAT special issue

    SUSTAINABLE DEVELOPMENT AND THE PROCESS OF JUSTIFYING CHOICES IN A CONTROVERSIAL UNIVERSE

    Get PDF
    All in all, neither the path of the generic principle nor that of the reduction to existing principles would appear to be fully satisfactory as the basis for establishing the legitimacy of sustainable development or as a way of making sustainability a principle of legitimacy by its own. We should probably resign ourselves to seeing in this idea a composite construction, still striving towards the formation of a new "superior common principle", without this principle yet being able to be completely clarified and validated. What we have here is an example of the sort of "compromise" described by Boltanski and Thévenot (1991, p.338): "In the compromise, the participants abandon the idea of clarifying the principle of their agreement but endeavour to maintain a frame of mind aiming at the common good." If we want to consolidate the compromise developing around sustainability, it would be well advised to seek the support of tests using well-formed objects. To this end, steps should be taken to move the emphasis away from long-term and unknowable sustainability requirements and closer to secondbest criteria focused on the transitional developments and possible risks of intentional human action, the ways of managing the linking of the different temporalities in play -- as regards the biophysical phenomena, their understanding and the main worlds of legitimacy (Godard, 1992) -- and the introduction of deliberation within the present generations as to what they feel best describes their identity, those things they would like to pass on

    Spatial distribution of far-infrared rotationally excited CH<sup>+</sup> and OH emission lines in the Orion Bar photodissociation region

    Get PDF
    Context. The methylidyne cation (CH+) and hydroxyl (OH) are key molecules in the warm interstellar chemistry, but their formation and excitation mechanisms are not well understood. Their abundance and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500−1000 K) in photodissociation regions (PDRs) with high incident far-ultraviolet (FUV) radiation field. The excitation may also originate in dense gas (>105 cm-3) followed by nonreactive collisions with H2, H, and electrons. Previous observations of the Orion Bar suggest that the rotationally excited CH+ and OH correlate with the excited CO, which is a tracer of dense and warm gas, and that formation pumping contributes to CH+ excitation.Aims. Our goal is to examine the spatial distribution of the rotationally excited CH+ and OH emission lines in the Orion Bar to establish their physical origin and main formation and excitation mechanisms.Methods. We present spatially sampled maps of the CH+ J = 3–2 transition at 119.8 μm and the OH Λ doublet at 84 μm in the Orion Bar over an area of 110″× 110″ with Herschel/PACS. We compare the spatial distribution of these molecules with those of their chemical precursors, C+ , O and H2, and tracers of warm and dense gas (high- J CO). We assess the spatial variation of the CH+ J = 2–1 velocity-resolved line profile at 1669 GHz with Herschel/HIFI spectrometer observations.Results. The OH and especially CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region at the edge of the Bar. While notably similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are strongly related to the observed vibrationally excited H2. This, together with the observed broad CH+ line widths, indicates that formation pumping contributes to the excitation of this reactive molecular ion. Interestingly, the peak of the rotationally excited OH 84 μm emission coincides with a bright young object, proplyd 244–440, which shows that OH can be an excellent tracer of UV-irradiated dense gas.Conclusions. The spatial distribution of CH+ and OH revealed in our maps is consistent with previous modeling studies. Both formation pumping and nonreactive collisions in a UV-irradiated dense gas are important CH+ J = 3–2 excitation processes. The excitation of the OH Λ doublet at 84 μm is mainly sensitive to the temperature and density

    OH+ in astrophysical media: state-to-state formation rates, Einstein coefficients and inelastic collision rates with He

    Get PDF
    The rate constants required to model the OH+^+ observations in different regions of the interstellar medium have been determined using state of the art quantum methods. First, state-to-state rate constants for the H2(v=0,J=0,1)_2(v=0,J=0,1)+ O+^+(4S^4S) \rightarrow H + OH+(X3Σ,v,N)^+(X ^3\Sigma^-, v', N) reaction have been obtained using a quantum wave packet method. The calculations have been compared with time-independent results to asses the accuracy of reaction probabilities at collision energies of about 1 meV. The good agreement between the simulations and the existing experimental cross sections in the 0.010.01-1 eV energy range shows the quality of the results. The calculated state-to-state rate constants have been fitted to an analytical form. Second, the Einstein coefficients of OH+^+ have been obtained for all astronomically significant ro-vibrational bands involving the X3ΣX^3\Sigma^- and/or A3ΠA^3\Pi electronic states. For this purpose the potential energy curves and electric dipole transition moments for seven electronic states of OH+^+ are calculated with {\it ab initio} methods at the highest level and including spin-orbit terms, and the rovibrational levels have been calculated including the empirical spin-rotation and spin-spin terms. Third, the state-to-state rate constants for inelastic collisions between He and OH+(X3Σ)^+(X ^3\Sigma^-) have been calculated using a time-independent close coupling method on a new potential energy surface. All these rates have been implemented in detailed chemical and radiative transfer models. Applications of these models to various astronomical sources show that inelastic collisions dominate the excitation of the rotational levels of OH+^+. In the models considered the excitation resulting from the chemical formation of OH+^+ increases the line fluxes by about 10 % or less depending on the density of the gas

    High-resolution absorption spectroscopy of the OH 2Pi 3/2 ground state line

    Full text link
    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Pi3/2, J = 5/2 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 10^14 cm^-2, which corresponds to a fractional abundance of 10^-7 to 10^-8, which is comparable to that of H_2O. The absorption spectra of both species have similar velocity components, and the ratio of the derived H_2O to OH column densities ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of ^18OH

    Sulphur-bearing molecules in diffuse molecular clouds: new results from SOFIA/GREAT and the IRAM 30 m telescope

    Full text link
    We have observed five sulphur-bearing molecules in foreground diffuse molecular clouds lying along the sight-lines to five bright continuum sources. We have used the GREAT instrument on SOFIA to observe the 1383 GHz 2Π3/2J=5/23/2^2\Pi_{3/2} J=5/2-3/2 transitions of SH towards the star-forming regions W31C, G29.96-0.02, G34.3+0.1, W49N and W51, detecting foreground absorption towards all five sources; and the EMIR receivers on the IRAM 30m telescope at Pico Veleta to detect the H2_2S 1(10)-1(01), CS J=2-1 and SO 3(2)-2(1) transitions. In nine foreground absorption components detected towards these sources, the inferred column densities of the four detected molecules showed relatively constant ratios, with N(SH)/N(H2_2S) in the range 1.1 - 3.0, N(CS)/N(H2_2S) in the range 0.32 - 0.61, and N(SO)/N(H2_2S) in the range 0.08 - 0.30. The observed SH/H2_2 ratios - in the range (0.5-2.6) ×108\times 10^{-8} - indicate that SH (and other sulphur-bearing molecules) account for << 1% of the gas-phase sulphur nuclei. The observed abundances of sulphur-bearing molecules, however, greatly exceed those predicted by standard models of cold diffuse molecular clouds, providing further evidence for the enhancement of endothermic reaction rates by elevated temperatures or ion-neutral drift. We have considered the observed abundance ratios in the context of shock and turbulent dissipation region (TDR) models. Using the TDR model, we find that the turbulent energy available at large scale in the diffuse ISM is sufficient to explain the observed column densities of SH and CS. Standard shock and TDR models, however, fail to reproduce the column densities of H2_2S and SO by a factor of about 10; more elaborate shock models - in which account is taken of the velocity drift, relative to H2_2, of SH molecules produced by the dissociative recombination of H3_3S+^+ - reduce this discrepancy to a factor ~ 3.Comment: 30 pages, accepted for publication in A&

    Towards the noise reduction of piezoelectrical-driven synthetic jet actuators

    Get PDF
    This paper details an experimental investigation aimed at reducing the noise output of piezoelectrical-driven synthetic jet actuators without compromising peak jet velocity. Specifically, the study considers double-chamber ('back-to-back') actuators for anti-phase noise suppression and corrugated-lobed orifices as a method to enhance turbulent mixing of the jets to suppress jet noise. The study involved the design, manufacture and bench test of interchangeable actuator hardware. Hot-wire anemometry and microphone recordings were employed to acquire velocity and noise measurements respectively for each chamber configuration and orifice plate across a range of excitation frequencies and for a fixed input voltage. The data analysis indicated a 32% noise reduction (20 dBA) from operating a singlechamber, circular orifice SJA to a double-chamber, corrugated-lobed orifice SJA at the Helmholtz resonant frequency. Results also showed there was a small reduction in peak jet velocity of 7% (~3 m/s) between these two cases based on orifices of the same discharge area. Finally, the electrical-to-fluidic power conversion efficiency of the double-chamber actuator was found to be 15% across all orifice designs at the resonant frequency; approximately double the efficiency of a single-chamber actuator. This work has thus demonstrated feasible gains in noise reduction and power efficiency through synthetic jet actuator design

    A milestone toward understanding PDR properties in the extreme environment of LMC-30Dor

    Full text link
    More complete knowledge of galaxy evolution requires understanding the process of star formation and interaction between the interstellar radiation field and the interstellar medium in galactic environments traversing a wide range of physical parameter space. Here we focus on the impact of massive star formation on the surrounding low metallicity ISM in 30 Doradus in the Large Magellanic Cloud. A low metal abundance, as is the case of some galaxies of the early universe, results in less ultra-violet shielding for the formation of the molecular gas necessary for star formation to proceed. The half-solar metallicity gas in this region is strongly irradiated by the super star cluster R136, making it an ideal laboratory to study the structure of the ISM in an extreme environment. Our spatially resolved study investigates the gas heating and cooling mechanisms, particularly in the photo-dissociation regions where the chemistry and thermal balance are regulated by far-ultraviolet photons (6 eV< h\nu <13.6 eV). We present Herschel observations of far-infrared fine-structure lines obtained with PACS and SPIRE/FTS. We have combined atomic fine-structure lines from Herschel and Spitzer observations with ground-based CO data to provide diagnostics on the properties and the structure of the gas by modeling it with the Meudon PDR code. We derive the spatial distribution of the radiation field, the pressure, the size, and the filling factor of the photodissociated gas and molecular clouds. We find a range of pressure of ~ 10^5 - 1.7x10^6 cm^{-3} K and a range of incident radiation field G_UV ~ 10^2 - 2.5x10^4 through PDR modeling. Assuming a plane-parallel geometry and a uniform medium, we find a total extinction of 1-3 mag , which correspond to a PDR cloud size of 0.2 to 3pc, with small CO depth scale of 0.06 to 0.5pc. We also determine the three dimensional structure of the gas. (Abridged)Comment: 20 pages, 23 figures, accepted in A&
    corecore