265 research outputs found

    Is there an optimal strategy for real-time continuous glucose monitoring in pediatrics? A 12-month French multi-center, prospective, controlled randomized trial (Start-In!)

    Get PDF
    AIM: To compare the efficacy of three strategies for real-time continuous glucose monitoring (RT-CGM) over 12 months in children and adolescents with type 1 diabetes. METHODS: A French multicenter trial (NCT00949221) with a randomized, controlled, prospective, open, and parallel-group design was conducted. After 3 months of RT-CGM, patients were allocated to one of three groups: return to self-monitoring of blood glucose, continuous CGM (80% of the time), or discontinuous CGM (40% of the time). The primary outcome was hemoglobin A1c (HbA1c) levels from 3 to 12 months. The secondary outcomes were acute metabolic events, hypoglycemia, satisfaction with CGM and cost. RESULTS: We included 151 subjects, aged 2 to 17 years, with a mean HbA1c level of 8.5% (SD0.7; 69 mmol/mol). The longitudinal change in HbA1c levels was similar in all three groups, at 3, 6, 9 and 12 months. The medical secondary endpoints did not differ between groups. The rate of severe hypoglycemia was significantly lower than that for the pretreatment year for the entire study population. Subjects reported consistent use and good tolerance of the device, regardless of age or insulin treatment. The use of full-time RT-CGM for 3 months costs the national medical insurance system €2629 per patient. CONCLUSION: None of the three long-term RT-CGM strategies evaluated in pediatric type 1 diabetes was superior to the others in terms of HbA1c levels. CGM-use for 3 months decreased rates of severe hypoglycemia. Our results confirm the feasibility of long-term RT-CGM-use and the need to improve educational support for patients and caregivers

    Chaste: an open source C++ library for computational physiology and biology

    Get PDF
    Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to "re-invent the wheel" with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials

    A defined mechanistic correlate of protection against Plasmodium falciparum malaria in non-human primates.

    Get PDF
    Malaria vaccine design and prioritization has been hindered by the lack of a mechanistic correlate of protection. We previously demonstrated a strong association between protection and merozoite-neutralizing antibody responses following vaccination of non-human primates against Plasmodium falciparum reticulocyte binding protein homolog 5 (PfRH5). Here, we test the mechanism of protection. Using mutant human IgG1 Fc regions engineered not to engage complement or FcR-dependent effector mechanisms, we produce merozoite-neutralizing and non-neutralizing anti-PfRH5 chimeric monoclonal antibodies (mAbs) and perform a passive transfer-P. falciparum challenge study in Aotus nancymaae monkeys. At the highest dose tested, 6/6 animals given the neutralizing PfRH5-binding mAb c2AC7 survive the challenge without treatment, compared to 0/6 animals given non-neutralizing PfRH5-binding mAb c4BA7 and 0/6 animals given an isotype control mAb. Our results address the controversy regarding whether merozoite-neutralizing antibody can cause protection against P. falciparum blood-stage infections, and highlight the quantitative challenge of achieving such protection

    Delta1 Expression, Cell Cycle Exit, and Commitment to a Specific Secretory Fate Coincide within a Few Hours in the Mouse Intestinal Stem Cell System

    Get PDF
    The stem cells of the small intestine are multipotent: they give rise, via transit-amplifying cell divisions, to large numbers of columnar absorptive cells mixed with much smaller numbers of three different classes of secretory cells - mucus-secreting goblet cells, hormone-secreting enteroendocrine cells, and bactericide-secreting Paneth cells. Notch signaling is known to control commitment to a secretory fate, but why are the secretory cells such a small fraction of the population, and how does the diversity of secretory cell types arise? Using the mouse as our model organism, we find that secretory cells, and only secretory cells, pass through a phase of strong expression of the Notch ligand Delta1 (Dll1). Onset of this Dll1 expression coincides with a block to further cell division and is followed in much less than a cell cycle time by expression of Neurog3 – a marker of enteroendocrine fate – or Gfi1 – a marker of goblet or Paneth cell fate. By conditional knock-out of Dll1, we confirm that Delta-Notch signaling controls secretory commitment through lateral inhibition. We infer that cells stop dividing as they become committed to a secretory fate, while their neighbors continue dividing, explaining the final excess of absorptive over secretory cells. Our data rule out schemes in which cells first become committed to be secretory, and then diversify through subsequent cell divisions. A simple mathematical model shows how, instead, Notch signaling may simultaneously govern the commitment to be secretory and the choice between alternative modes of secretory differentiation

    hnRNP I Inhibits Notch Signaling and Regulates Intestinal Epithelial Homeostasis in the Zebrafish

    Get PDF
    Regulated intestinal stem cell proliferation and differentiation are required for normal intestinal homeostasis and repair after injury. The Notch signaling pathway plays fundamental roles in the intestinal epithelium. Despite the fact that Notch signaling maintains intestinal stem cells in a proliferative state and promotes absorptive cell differentiation in most species, it remains largely unclear how Notch signaling itself is precisely controlled during intestinal homeostasis. We characterized the intestinal phenotypes of brom bones, a zebrafish mutant carrying a nonsense mutation in hnRNP I. We found that the brom bones mutant displays a number of intestinal defects, including compromised secretory goblet cell differentiation, hyperproliferation, and enhanced apoptosis. These phenotypes are accompanied by a markedly elevated Notch signaling activity in the intestinal epithelium. When overexpressed, hnRNP I destabilizes the Notch intracellular domain (NICD) and inhibits Notch signaling. This activity of hnRNP I is conserved from zebrafish to human. In addition, our biochemistry experiments demonstrate that the effect of hnRNP I on NICD turnover requires the C-terminal portion of the RAM domain of NICD. Our results demonstrate that hnRNP I is an evolutionarily conserved Notch inhibitor and plays an essential role in intestinal homeostasis

    Catchability of pelagic trawls for sampling deep-living nekton in the mid-North Atlantic

    Get PDF
    Material collected in summer 2004 from the Mid-Atlantic Ridge between Iceland and the Azores with three pelagic trawls was used to estimate relative catchabilities of common fish, cephalopod, decapod, and jellyfish species. Catchability is defined as the ratio of numbers caught between two trawls, standardized for towed distance. Taxon-specific catchability coefficients were estimated for two large pelagic trawls with graded meshes, using a smaller pelagic trawl with a uniform mesh size as the reference trawl. Two of the trawls were equipped with multiple opening–closing codends that allowed sampling of different depth layers. Generalized linear and mixed models suggest that most of the taxa have catchabilities much lower than expected from the area of opening alone, indicating that only a few species are herded by the large mesh at the mouth of larger trawls. Catchability coefficients across taxa show a very large spread, indicating that the sampled volume for the larger trawls with graded meshes was highly taxon-specific. Part of this variability can be explained by body size and taxonomic group, the latter probably reflecting differences in body form and behaviour. The catchability estimates presented here form the basis for combining data for quantitative analyses of community structure

    Processing of Plasmodium falciparum Merozoite Surface Protein MSP1 activates a Spectrin-binding function enabling parasite egress from RBCs

    Get PDF
    The malaria parasite Plasmodium falciparum replicates within erythrocytes, producing progeny merozoites that are released from infected cells via a poorly understood process called egress. The most abundant merozoite surface protein, MSP1, is synthesized as a large precursor that undergoes proteolytic maturation by the parasite protease SUB1 just prior to egress. The function of MSP1 and its processing are unknown. Here we show that SUB1-mediated processing of MSP1 is important for parasite viability. Processing modifies the secondary structure of MSP1 and activates its capacity to bind spectrin, a molecular scaffold protein that is the major component of the host erythrocyte cytoskeleton. Parasites expressing an inefficiently processed MSP1 mutant show delayed egress, and merozoites lacking surface-bound MSP1 display a severe egress defect. Our results indicate that interactions between SUB1-processed merozoite surface MSP1 and the spectrin network of the erythrocyte cytoskeleton facilitate host erythrocyte rupture to enable parasite egress

    Lkb1 Deficiency Alters Goblet and Paneth Cell Differentiation in the Small Intestine

    Get PDF
    The Lkb1 tumour suppressor is a multitasking kinase participating in a range of physiological processes. We have determined the impact of Lkb1 deficiency on intestinal homeostasis, particularly focussing on secretory cell differentiation and development since we observe strong expression of Lkb1 in normal small intestine Paneth and goblet cells. We crossed mice bearing an Lkb1 allele flanked with LoxP sites with those carrying a Cyp1a1-specific inducible Cre recombinase. Lkb1 was efficiently deleted from the epithelial cells of the mouse intestine after intraperitoneal injection of the inducing agent β-naphthoflavone. Bi-allelic loss of Lkb1 led to the perturbed development of Paneth and goblet cell lineages. These changes were characterised by the lack of Delta ligand expression in Lkb1-deficient secretory cells and a significant increase in the levels of the downstream Notch signalling effector Hes5 but not Hes1. Our data show that Lkb1 is required for the normal differentiation of secretory cell lineages within the intestine, and that Lkb1 deficiency modulates Notch signalling modulation in post-mitotic cells
    corecore