215 research outputs found

    Fluid flow and radiative nonlinear heat transfer over a stretching sheet

    Get PDF
    In the present paper, we endeavor to perform a numerical analysis in connection with the boundary layer flow induced in a quiescent fluid by a continuous sheet stretching with velocity uw (x) ∌x1/3 with heat transfer. The effects of thermal radiation using the nonlinear Rosseland approximation are investigated. We search for similarity solutions and reduce the problem to a couple of ordinary differential equations containing three dimensionless parameters: the radiation parameter NR, the temperature ratio parameter Ξw and the Prandtl number Pr. The computational results for velocity, temperature and heat transfer characteristics are presented in both graphical and tabular forms.Cortell Bataller, R. (2014). Fluid flow and radiative nonlinear heat transfer over a stretching sheet. Journal of King Saud University - Science. 26(2):161-167. doi:10.1016/j.jksus.2013.08.004S16116726

    Heat Transfer in an Upper Convected Maxwell Fluid with Fluid Particle Suspension

    Get PDF
    An analysis is carried out to study the magnetohydrodynamic (MHD) flow and heat transfer characteristics of an electrically conducting dusty non-Newtonian fluid, namely, the upper convected Maxwell (UCM) fluid over a stretching sheet. The stretching velocity and the temperature at the surface are assumed to vary linearly with the distance from the origin. Using a similarity transformation, the governing nonlinear partial differential equations of the model problem are transformed into coupled non-linear ordinary differential equations and the equations are solved numerically by a second order finite difference implicit method known as the Keller-box method. Comparisons with the available results in the literature are presented as a special case. The effects of the physical parameters on the fluid velocity, the velocity of the dust particle, the density of the dust particle, the fluid temperature, the dust-phase temperature, the skin friction, and the wall-temperature gradient are presented through tables and graphs. It is observed that, Maxwell fluid reduces the wall-shear stress. Also, the fluid particle interaction reduces the fluid temperature in the boundary layer. Furthermore, the results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid flow phenomena, especially the dusty UCM fluid flow phenomena

    Computational analysis of third-grade liquid flow with cross diffusion effects: application to entropy modeling

    Get PDF
    The key goal of this current study is to analyze the entropy generation with cross diffusion effects. The third-grade type non-Newtonian fluid model is used in this study. The current flow problem is modelled with stretching plate. Modified Fourier heat flux is replaced the classical heat flux. The appropriate transformation is availed to convert the basic boundary layers equations into ODEs and then verified by homotopy algorithm. The consequences of various physical quantities on temperature, velocity, entropy and concentration profile are illustrated graphically

    A Mouse Model of Heritable Cerebrovascular Disease

    Get PDF
    The study of animal models of heritable cerebrovascular diseases can improve our understanding of disease mechanisms, identify candidate genes for related human disorders, and provide experimental models for preclinical trials. Here we describe a spontaneous mouse mutation that results in reproducible, adult-onset, progressive, focal ischemia in the brain. The pathology is not the result of hemorrhage, embolism, or an anatomical abnormality in the cerebral vasculature. The mutation maps as a single site recessive locus to mouse Chromosome 9 at 105 Mb, a region of shared synteny with human chromosome 3q22. The genetic interval, defined by recombination mapping, contains seven protein-coding genes and one processed transcript, none of which are changed in their expression level, splicing, or sequence in affected mice. Targeted resequencing of the entire interval did not reveal any provocative changes; thus, the causative molecular lesion has not been identified

    Boundary layer flow of nanofluid over an exponentially stretching surface

    Get PDF
    The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt

    Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media

    Get PDF
    Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic (MHD), incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland’s diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted

    Síndrome de quemarse por el trabajo (burnout) en los médicos de España.

    Get PDF
    El Síndrome de Quemarse por el Trabajo (SQT) o "Burnout" es un problema de salud que puede afectar a profesionales de todo tipo, pero muy especialmente a aquellos cuya actividad guarda relación con el cuidado de seres humanos. Los profesionales de la salud estån particularmente expuestos a este cuadro y los médicos son el prototipo de trabajador expuesto al mismo. Se trata de un problema de salud tremendamente destructivo que afecta a la vida laboral y personal, que lesiona la calidad del trabajo prestado y que deteriora los planos cognitivo y emocional del individuo, su vida familiar y hasta su salud física
    • 

    corecore