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Abstract. An analysis is carried out to study the magnetohydrodynamic (MHD) flow
and heat transfer characteristics of an electrically conducting dusty non-Newtonian
fluid, namely, the upper convected Maxwell (UCM) fluid over a stretching sheet. The
stretching velocity and the temperature at the surface are assumed to vary linearly with
the distance from the origin. Using a similarity transformation, the governing non-
linear partial differential equations of the model problem are transformed into coupled
non-linear ordinary differential equations and the equations are solved numerically
by a second order finite difference implicit method known as the Keller-box method.
Comparisons with the available results in the literature are presented as a special case.
The effects of the physical parameters on the fluid velocity, the velocity of the dust
particle, the density of the dust particle, the fluid temperature, the dust-phase tem-
perature, the skin friction, and the wall-temperature gradient are presented through
tables and graphs. It is observed that, Maxwell fluid reduces the wall-shear stress. Al-
so, the fluid particle interaction reduces the fluid temperature in the boundary layer.
Furthermore, the results obtained for the flow and heat transfer characteristics reveal
many interesting behaviors that warrant further study on the non-Newtonian fluid
flow phenomena, especially the dusty UCM fluid flow phenomena.
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1 Introduction

The heat transfer due to a continuously moving surface through an ambient liquid is
one of the important areas of current research due to its extensive application in broad
spectrum of science and engineering disciplines, for instance, in chemical engineering
processes like metallurgical process and polymer extrusion process involving cooling of
a molten liquid being stretched into a cooling system. The fluid mechanical properties
desired for an outcome of such a process would mainly depend on two aspects, one is
the cooling liquid used and the other is the rate of stretching. Liquids of non-Newtonian
characteristics, which are electrically conducting, can be opted as a cooling liquid as the
flow and the heat transfer can be regulated by some external agency. Rate of stretching
is very important as rapid stretching results in sudden solidification there by destroying
the expected properties of the outcome. This is a fundamental problem that arises fre-
quently in many practical situations such as polymer extrusion process; other processes
like drawing; annealing and tinning of copper wires; continuous stretching; rolling and
manufacturing of plastic films and artificial fibers; heat treated materials traveling on
conveyer belts; glass blowing; crystal growing; paper production and so on. Sakiadis [1]
was the first among the others to study the boundary layer flow generated by a con-
tinuous solid surface moving with constant velocity. Crane [2] extended the work of
Sakiadis [1] and analyzed a steady two-dimensional boundary layer flow caused by a
stretching sheet moving with a velocity linearly varying with the distance from a fixed
point on the sheet. Many investigators have extended the work of Crane to study heat
and mass transfer under different physical situations [3–7].

All the above investigators restricted their analyses to flow and heat transfer in the
absence of magnetic field. But, we find several applications in polymer industry. To be
more specific, it may be pointed out that many metallurgical processes involve the cool-
ing of continuous strips or filaments by drawing them through a quiescent fluid and that
in the process of drawing, these strips are sometimes stretched. Mention may be made
of drawing, annealing, and thinning of copper wires. In these cases, the properties of
final product depend to a great extent on the rate of cooling by drawing such strips in
an electrically conducting fluid subject to a magnetic field. In view of these applications
Pavlov [8] investigated the flow of an electrically conducting fluid caused solely by the
stretching of an elastic sheet in the presence of a uniform magnetic field. Chakrabarti and
Gupta [9] considered the flow and heat transfer of an electrically conducting fluid past
a porous stretching sheet and presented analytical solution for the flow and numerical
solution for the heat transfer problem. In this work the fluid was assumed to be New-
tonian. However, many industrial fluids are non-Newtonian or rheological in nature:
Such as molten plastics, polymers, suspension, foods, slurries, paints, glues, printing
inks, blood. That is, they might exhibit dynamic deviation from Newtonian behavior de-
pending upon the flow configuration and/or the rate of deformation. These fluids often
obey non-linear constitutive equations and the complexity of these constitutive equation-
s is the main culprit for the lack of exact analytical solutions. For example, visco-elastic
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fluid models considered in these works are simple models, such as second order fluid
model and Walters’ model [10–13] which are known to be good for weakly elastic fluids
subjected to slowly varying flows. These two models are known to violate certain rules
of thermodynamics. Therefore significance of the results reported in the above works is
limited as far as the polymer industry is concerned. Obviously for the theoretical results
to be of any importance, more general visco-elastic fluid models such as upper convected
Maxwell model or Oldroyd B model should be invoked in the analysis. Indeed these two
fluid models are being used recently to study the visco-elastic fluid flow over a stretch-
ing or non-stretching sheet with or without heat transfer [14–20]. Recently, Prasad et
al. [20] studied the effects of the temperature-dependent thermo-physical properties on
the MHD boundary layer flow and heat transfer of a UCM fluid over a stretching sheet
in the presence of internal heat generation/absorption.

All the above investigators restrict their analyses to the flow induced by a stretching
sheet in the absence of fluid-particle suspension. The analysis of two-phase flow in which
solid spherical particles are distributed in a fluid are of interest in a wide range of techni-
cal problems such as flow through packed beds, sedimentation, environmental pollution,
centrifugal separation of particles and blood rheology. The study of the fluid-particle sus-
pension flow is important in determining the particle accumulation and impingement of
the particle on the surface. Saffman [21] investigated the stability of the laminar flow of
a dusty gas in which the dust particles are uniformly distributed. Datta and Mishra [22]
studied the dusty fluid flow over a semi-infinite flat plate. Vajravelu and Nayfeh [23]
analyzed the hydromagnetic flow of dusty fluid over a stretching sheet with the effect
of suction. Further Xie et al. [24] have extended the work of Datta and Mishra [22] to
study the hydrodynamic stability of a particle-laden flow in growing flat plate boundary
layer. Recently, Vajravelu et al. [25] studied the effects of variable viscosity and vari-
able thermal conductivity on the hydromagnetic fluid-particle suspension flow and heat
transfer over a stretching sheet. In these studies, the physical properties of the ambient
fluid were assumed to be constant. However, it is known that these physical properties
of the ambient fluid may change with temperature [26, 27]. For lubricating fluids, heat
generated by internal friction and the corresponding rise in the temperature affects the
thermal conductivity of the fluid so it can no longer be assumed constant. The increase of
temperature leads to increase in the transport phenomena by reducing the thermal con-
ductivity across the thermal boundary layer due to which the heat transfer at the wall is
also affected. Therefore to predict the flow and heat transfer rates, it is necessary to take
variable thermal conductivity of the fluid into account. Available literature on variable
thermal conductivity and fluid-particle interaction shows that combined work has not
been carried out for UCM fluid over a stretching sheet.

Motivated by these analyses, in the present paper, the authors study the MHD flow
and heat transfer of a dusty non-Newtonian UCM fluid over a stretching sheet. This
is in contrast to the work of Vajravelu and Nayfeh [22], where Newtonian fluid with
constant thermal conductivity was considered. Because of the non-Newtonian rheology,
the fluid-particle interaction, the momentum and energy equations for both the fluid and
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the dust phase are coupled and highly non-linear partial differential equations (PDEs).
These PDEs are converted to couple, non-linear ordinary differential equations (ODEs)
by similarity variables. Because of the complexity and the non-linearly, we propose to
solve these equations by a second order finite difference scheme known as the Keller-
box method. The effects of pertinent parameters on the velocity and temperature fields,
the skin friction coefficient and the local Nusselt number are presented in graphs and
tables. It is believed that the results obtained in the present study will provide useful
information for applications and will complement to the results in the literature.

2 Mathematical formulation

Consider a steady two-dimensional, boundary layer flow of a viscous incompressible and
electrically conducting dusty non-Newtonian fluid (namely, UCM fluid) over a horizon-
tal stretching sheet with a stretching velocity Uw(x)=bx, and prescribed surface temper-
ature Tw(x)= A(x/l), where b>0 is the stretching velocity rate, l is the reference length
scale, and A is a constant. The sheet is coinciding with the plane y = 0, with the flow
being confined to y>0. Two equal and opposite forces are introduced along the x-axis, so
that the sheet is stretched, keeping the origin fixed (see Fig. 1). The thermo-physical fluid
properties are assumed to be isotropic and constant, except for the thermal conductivity
which is assumed to vary as a function of temperature in the following form (see [26])

K(T)=K∞

(

1+
ε

∆T
(T−T∞)

)

, (2.1)

where K(T) is the temperature dependent fluid thermal conductivity, K∞ is the thermal
conductivity far away from the slit, ε=(Kw−K∞)/K∞ is a small parameter known as the
variable thermal conductivity parameter, Kw is the thermal conductivity at the surface,
∆T=Tw−T∞, Tw is the surface temperature, and T∞ is the ambient temperature. Further,
the flow region is under the influence of a uniform transverse magnetic field B=(0,B0,0):
Imposition of such a magnetic field stabilizes the flow (see [16]). It is also assumed that
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Figure 1: Physical model and co ordinate system.
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the induced magnetic field is negligible: This is valid for small magnetic Reynolds num-
ber. Since there is no external electric field, the electric field due to polarization of charges
is negligible. The viscous dissipation and the Ohmic heating terms are not included in
the energy equation since they are, generally small. The fluid and the dust particle clouds
are suppose to be static at the beginning. The dust particles are assumed to be spherical in
shape and uniform in size and density of the dust particle is taken as a constant through-
out the flow. Under these conditions, the basic boundary-layer equations for continuity,
conservation of mass (with no pressure gradient), and energy for clear UCM fluid as well
as dusty fluid can be written as

∂u

∂x
+

∂v

∂y
=0, (2.2a)

u
∂u

∂x
+v

∂u

∂y
+λ

(

u2 ∂2u

∂x2
+v2 ∂2u

∂y2
+2uv

∂2u

∂x∂y

)

=ν
∂2u

∂y2
−

σB2
0

ρ

(

u+λv
∂u

∂y

)

−
ρp

ρτ
(u−up), (2.2b)

up
∂up

∂x
+vp

∂up

∂y
=

1

τ
(u−up), (2.2c)

up
∂vp

∂x
+vp

∂vp

∂y
=

1

τ
(v−vp), (2.2d)

∂

∂x
(ρpup)+

∂

∂y
(ρpvp)=0, (2.2e)

u
∂T

∂x
+v

∂T

∂y
=

∂

∂y

(K(T)

ρcp

∂T

∂y

)

+
ρpcs

ργTcp
(TP−T), (2.2f)

up
∂Tp

∂x
+vp

∂Tp

∂y
=−

1

γT
(TP−T), (2.2g)

where (u,v) and (up,vp) are the velocity components of the fluid and dust particle phases
along the x and y axes, respectively; and ρ is the density of the fluid. Here τ=1/k is the
relaxation time of particles, k is the Stokes’ constant (= 6πµD), µ is the coefficient of
viscosity and D is the average radius of the dust particles. Further, σ is the electrical
conductivity, λ is the relaxation time and ρp is the mass of the dust particles per unit
volume of the fluid. T and Tp are respectively, the temperatures of the fluid and the dust
phase particles. Further, cp and cs are, respectively, the specific heat capacity of the fluid
and the specific heat capacity of the dust particles, γT is the temperature relaxation time
(=3Prγpcs/2cp); γp is the velocity relaxation time (= 1/k); and Pr is the usual Prandtl
number. It may be pointed here that there is an additional term

σB2
0

ρ
λv

∂u

∂y

in the momentum equation (2.2b) as in [16]. It is assumed that the normal stress is of the
same order of magnitude as that of the shear stress. The last term in Eq. (2.2b) represents
the force due to the relative motion between the fluid and the dust particles. In deriving
these equations the Stokesian drag force is considered for the interaction between the
fluid and the particle phases.
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The appropriate boundary conditions on velocity and temperature are

u=Uw(x)=bx, v=0, T=Tw =A(x/l), at y=0, (2.3a)

u→0, up→0, vp →v, ρp → kρ, T→T∞, Tp→T∞, as y→∞. (2.3b)

To convert the governing equations into a set of similarity equations, we introduce the
following new variables

η=

√

b

ν
y, u=bx f ′(η), v=−

√
bν f (η), (2.4a)

up=bxF(η), vp =
√

bνG(η), ρr =H(η), (2.4b)

T−T∞ =(Tw−T∞)θ(η), TP−T∞ =(Tw−T∞)θP(η), Tw−T∞ =A(x/l), (2.4c)

where η is the similarity variable and prime denotes differentiation with respect to η,
ρr =ρp/ρ is the relative density, f , F, G, H, θ, θp are dimensionless quantities and ν is the
kinematic viscosity.

Substituting (2.4) into (2.2b)-(2.2g), we obtain the following coupled non-linear ordi-
nary differential equation

f ′′′+ f f ′′− f ′
2
+β1(2 f f ′ f ′′− f 2 f ′′′)−Mn( f ′−β1 f f ′′)+Hβ(F− f ′)=0, (2.5a)

GF′+F2+β(F− f ′)=0, GG′+β( f +G)=0, GH′+HG′+FH=0, (2.5b)

((1+εθ)θ′)
′−Pr

∣

∣

∣

∣

f ′ θ′

f θ

∣

∣

∣

∣

+
2

3
βH(θP−θ)=0, 2FθP+GθP

′+L0β(θP−θ)=0, (2.5c)

along with the boundary conditions

f ′=1, f =0, θ=1, at η=0, (2.6a)

f ′→0, F→0, G→− f , H→ k, θ→0, θP →0, as η→∞, (2.6b)

where Mn=σB2
0/ρb is the magnetic parameter, β=1/bτ is the fluid-particle interaction

parameter, β1 =λb is the Maxwell parameter, Pr=ν/α∞ is the Prandtl number and L0=
τ/γT is the temperature relaxation parameter. The physical quantities of interest are the
skin friction coefficient C f and the local Nusselt number Nux which are defined by

C f =
τw

ρ∞U2
w/2

, Nux =
xqw

k∞(Tw−T∞)
, (2.7)

where τw is the surface shear stress and qw is the rate of heat transfer from the surface.
The surface shear stress and the heat flux are given by

τw =µ∞

(∂u

∂y

)

y=0

, qw =−K∞

(∂T

∂y

)

y=0

. (2.8)

Using the similarity variables (2.4), we obtain

1

2
C f Re1/2

x = f ′′(0) and
Nux

Re1/2
x

=−θ′(0), (2.9)

where Rex =Uwx/ν is the local Reynolds number.
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2.1 Exact solutions for some special cases

Here we present exact solutions in certain special cases. Such solutions are useful and
serve as a baseline for comparison with the solutions obtained via numerical schemes.

2.1.1 No magnetic field and no fluid-particle interaction

In the limiting case of β1 =0 and β=0, the MHD boundary layer flow and heat transfer
problem degenerates. In this case the results of the present work are compared with
the exact solution of Chakrabarti and Gupta [9] and are presented in Table 1. From this
table it is obvious that the numerical solutions are in close agreement with the exact ones
of [17, 19, 20] and [30].

Table 1: Comparison of some of the values of − f ′′(0) when β=0.0, Pr=1.0 and ε=0.0.

When β1=0.0 Mn=0.0 Mn=0.5 Mn=1.0 Mn=1.5 Mn=2.0
Andersson et al. [30] for n=1 1.00000 1.2249 1.4140 1.58100 1.73200
Prasad et al. [20] 1.000174 1.224753 1.414499 1.581139 1.732203
Present results 1.000174 1.22475 1.41421 1.58114 1.73205
When Mn=0.0 β1=0.0 β1=0.2 β1=0.4 β1=0.6 β1=0.8
Sadeghy [17] 1.00000 1.0549 1.10084 1.0015016 1.19872
Vajravelu et al. [19] 1.0001743 1.051975 1.1019475 1.1501625 1.1967279
Present results 1.000174 1.05198 1.10195 1.15016 1.19673

2.1.2 No magnetic field but in the presence of fluid-particle interaction

In the absence of Maxwell parameter, the system in (2.5) reduces to those of Vajravelu et
al. [25], when no variable thermo-physical properties are considered. Further, when the
energy transfer and magnetic field are not considered, equations in (2.5) reduce to those
of Vajravelu and Nayfeh [23]. Further, when the variable thermal conductivity and the
Maxwell parameters are absent, the analytical solutions are obtained via perturbation
technique for small values of fluid-particle interaction parameter. For small values of
fluid-particle interaction parameter let us perturb the flow and heat transfer fields as

f = f0+β f1+0(β2), F=F0+βF1+0(β2), G=G0+βG1+0(β2), (2.10a)

H=H0+βH1+0(β2), θ= θ0+βθ1+0(β2), θp= θp0+βθp1+0(β2), (2.10b)

where the perturbations f1, F1, G1 and H1 are small compared with the mean or the
zeroth-order quantities. With the help of equations in (2.10), the system of Eqs. (2.5)
and the boundary conditions (2.6) become

f0
′′′+ f0 f0

′′−( f0
′)

2
−Mn f0

′=0, G0F0
′+F2

0 =0, G0G0
′=0, (2.11a)

G0H0
′+H0G0

′+F0H0=0, θ0
′′+Pr( f0θ0

′− f0
′θ0)=0, 2F0θp0+G0θp0

′=0, (2.11b)

f0
′=1, f0=0, θ0 =1, at η=0, (2.11c)

f0
′→0, F0→0, G0→− f0, H0→ k, θ0→0, θp0

→0, as η→∞, (2.11d)
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to the zeroth-order and

f1
′′′+ f1 f0

′′+ f0 f1
′′−2 f0

′ f1
′−Mn f1

′+H0(F0− f0
′)=0, (2.12a)

G0F1
′+G1F0

′+2F0F1+F0− f0
′=0, (2.12b)

G0G1
′+G0

′G1+ f0+G0=0, (2.12c)

G0H1
′+H0

′G1+H0G1
′+G0

′H1+F0H1+H0F1=0, (2.12d)

θ1
′′+Pr( f0θ1

′− f0
′θ1)=

2

3
H0(θ0−θp0)−Pr( f1θ0

′− f1
′θ0), (2.12e)

G0θp1
′+F0θp1=−F1θp0−G1θp0

′+L0(θ0−θp0), (2.12f)

f1
′=0, f1=0, θ1 =0, at η=0, (2.12g)

f1
′→0, F1→0, G1→− f1, H1→ k, θ1→0, θp1

→0, as η→∞, (2.12h)

to the first-order.
The exact solutions (in terms of Kummer’s function φ) for the zeroth-order velocity

components f0, G0, F0, particle density H0 and temperature θ0 are

f0=A1+B1exp(−δη), F0=0, G0=−A1, H0= k, (2.13a)

θ0=exp
(

−
Pr

δ
η
)φ

(

Pr
δ2 −1,1+ Pr

δ2 ,−Pr
δ2 e−δη

)

φ
(

Pr
δ2 −1,1+ Pr

δ2 ,−Pr
δ2

) , θp0=0, (2.13b)

where A1=1/δ, B1=−1/δ, δ=
√

1+Mn.
Similarly the exact solutions for the first-order velocity components, first-order par-

ticle density and first-order temperature, satisfying the differential equations and the
boundary conditions are

f1=
{ −kB1

(A1δ−B1δ+2Mn)

}

e−δη+δηe−δη−1, F1=−
( B1

A1

)

e−δη, (2.14a)

G1=−
( B1

A1

)

e−δη−
{ −kB1

(A1δ−B1δ+2Mn)

}

, H1=0, θp1=−
L0

G0

∫

∞

η
θ0(z)dz, (2.14b)

where A1, B1, δ are constants. The solution θ1 may be obtained by solving the inhomoge-
neous equation it satisfies, using the standard variation of parameter method. The results
for various values of Mn, Pr and β1 are compared with the available results in the litera-
ture, and are shown in Table 2. The results in Tables 1 and 2 reveal very good agreement
between our numerical results and the available results in the literature.

3 Numerical procedure

The system (2.5) is coupled and highly nonlinear. Exact analytical solutions are not possi-
ble for the complete set of equations and, therefore, we use the efficient numerical method
with second order finite difference scheme known as the Keller-box method [28, 29]. The
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Table 2: Comparison of some of the values of −θ′(0) when β=0.0, Mn=0.0 and ε=0.0.

When β1=0.0 Pr=0.72 Pr=1.0 Pr=3.0 Pr=6.7 Pr=10.0
Grubkha and Bobba [3] 0.8086 1.0000 1.9237 - 3.7207
Ali [6] 0.8058 0.9961 1.9144 - 3.7006
Ishak et al. [7] 0.8086 1.0000 1.9237 3.0003 3.7207
Present results 0.808836 1.000000 1.923687 3.000272 3.720788
When Pr=1.0 β1=0.0 β1=0.2 β1=0.4 β1=0.6 β1=0.8
Vajravelu et al. [19] 1.0001743 0.9800923 0.9607879 0.9423181 0.9246983
Present results 1.000174 0.9800925 0.9607877 0.9423183 0.9246984

coupled non-linear ordinary differential equations (2.5) and (2.6) are reduced to a system
of nine first order equations with nine unknowns by assuming f= f1, f ′= f2, f ′′= f3, θ=θ1,
θ′=θ2. To solve this system of equations we require nine initial conditions while we have
only two initial conditions f (0), f ′(0) on f and one initial condition θ(0) on θ. The other
six initial conditions f ′′(0), F(0), G(0), H(0), θ′(0) and θp(0) are not known. However,
the values of f ′(η), F(η), G(η), H(η), θ(η) and θp(η) are known as η→∞. We employ the
Keller-box scheme and use the six known boundary conditions to produce six unknown
initial conditions at η=0. To select η∞, we begin with some initial guess values and solve
the boundary value problem with some particular set of parameters to obtain f ′′(0), F(0),
G(0), H(0), θ′(0) and θp(0). Thus, we start with the initial approximations as f ′′(0)= δ1,
F(0)= δ2, G(0)= δ3, H(0)= δ4, θ′(0)= δ5 and θp(0)=δ6. Let δi (i=1,2,3,4,5,6) be the cor-
rect values of f ′′(0), F(0), G(0), H(0), θ′(0) and θp(0). We integrate the resulting system
of nine ordinary differential equations using the fourth-order Runge-Kutta method and
obtain the values of f ′′(0), F(0), G(0), H(0), θ′(0) and θp(0). The solution process is re-
peated with another larger value of η∞ until two successive values of f ′′(0), F(0), G(0),
H(0), θ′(0) and θp(0) differ only after desired digit signifying the limit of the boundary
along η. The last value of η∞ is chosen as the appropriate value for that particular set of
parameters. Finally, the problem can be solved numerically using a second-order finite d-
ifference scheme known as the Keller-box method. The numerical solutions are obtained
in four steps as follows:

• Reduce the system (2.5) to a system of first order equations.

• Write the difference equations using central differences.

• Linearize the algebraic equations by Newton’s method, and write them in matrix-
vector form.

• Solve the linear system by the block tri-diagonal elimination technique.

For the sake of brevity, the details of the numerical procedure are not presented here. It
is also important to note that the computational time for each set of input parameters
should be short. Because physical domain in this problem is unbounded, whereas the
computational domain has to be finite, we apply the far field boundary conditions for the
similarity variable η at finite value denoted by ηmax. We ran our bulk of computations

http://dx.doi.org/10.4208/aamm.2013.m379
Downloaded from http:/www.cambridge.org/core. Bangalore University, on 24 Oct 2016 at 07:23:58, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.4208/aamm.2013.m379
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


378 K. Vajravelu, K. V. Prasad and S. R. Santhi / Adv. Appl. Math. Mech., 7 (2015), pp. 369-386

with the value ηmax = 7, which is sufficient to achieve the far field boundary conditions
asymptotically for all values of the parameters considered. For numerical calculations, a
uniform step size of ∆η = 0.01 is found to be satisfactory and the solutions are obtained
with an error tolerance of 10−6 in all the cases. The accuracy of the numerical scheme is
validated by comparing the skin friction and the rate of heat transfer results with those
available in the literature: They agree very well (see Tables 1 and 2).

4 Discussion of the results

In this section, we illustrate the effects of the pertinent parameters, namely, the fluid-
particle interaction parameter β, the Maxwell parameter β1, the magnetic parameter Mn,
the variable thermal conductivity parameter ε, and the Prandtl number Pr on the flow

Table 3: Numerical values for skin friction f ′′(0), the particle velocity components F(0), G(0), the particle
density component H(0), the wall temperature gradient θ(0), and the wall temperature dust particles θp(0) for
different values of the physical parameters.

Pr ε βl Mn β f ′′(0) F(0) G(0) H(0) θ′(0) θp(0)

1.0 0.1 0.2

0.0 -1.05198 0.00000 -0.91721 0.20000 -0.91331 0.00000
0.0 0.2 -1.06772 0.16766 -0.74287 0.20335 -0.97889 0.12794

1.0 -1.10203 0.52204 -0.30747 0.26545 -1.11558 0.41699
0.0 -1.47454 0.00000 -0.65650 0.20000 0.80837 0.00000

1.0 0.2 -1.48586 0.16766 -0.53473 0.20335 -0.88773 0.18858
1.0 -1.51082 0.52207 -0.22422 0.26538 -1.02239 0.47543

1.0 0.1

0.0 -1.22475 0.00000 -0.81593 0.20000 -0.87683 0.00000
0.0 0.5 0.2 -1.23838 0.16746 -0.66061 0.20341 -0.94702 0.1469

1.0 -1.26830 0.52143 -0.27293 0.26617 -1.08360 0.43885
0.0 -1.48979 0.00000 -0.59761 0.20000 -0.77975 0.00000

1.0 0.5 0.2 -1.50079 0.16813 -049030 0.20319 -0.86330 0.20926
1.0 -1.52507 0.52368 -0.20987 0.26349 -0.99637 0.48877

1.0

0.0 -1.28083 0.00000 -0.75394 0.20000 -0.92319 0.00000
0.0 0.2 0.5 0.2 -1.29379 0.16766 -0.61381 0.20335 -0.99709 0.15460

1.0 -1.32237 0.52207 -0.25617 0.26537 -1.14308 0.44341
0.0 -1.28083 0.00000 -0.75394 0.20000 -0.71619 0.00000

0.4 0.2 0.5 0.2 -1.29379 0.16766 -0.61381 0.20335 -0.77751 0.71511
1.0 -1.32237 0.52207 -0.25617 0.26537 -0.89403 0.46915
0.0 -1.22475 0.00000 -0.81593 0.20000 -0.70200 0.00000

0.72 0.1 0.2 0.2 0.2 -1.29379 0.16766 -0.61381 0.20335 -0.76722 0.24194
1.0 -1.28833 0.70817 -0.06469 0.52063 -0.90682 0.54564
0.0 -1.22475 0.00000 -0.81593 0.20000 -2.33917 0.00000

5.0 0.1 0.2 0.2 0.2 -1.29379 0.16766 -0.61381 0.20335 -2.34460 0.01386
1.0 -1.28833 0.70817 -0.06469 0.52063 -2.45253 0.08022
0.0 -1.22475 0.00000 -0.81593 0.20000 -3.43155 0.00000

10.0 0.1 0.2 0.2 0.2 -1.29379 0.16766 -0.61381 0.20335 -3.42930 0.00473
1.0 -1.28833 0.70817 -0.06469 0.52063 -3.50713 0.03229
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Figure 2: From left to right: (a) Transverse velocity profiles for different values of β and Mn when β1 = 0.2,
Pr=1.0, ε=0.1; (b) Horizontal velocity profiles for different values of β and Mn when β1=0.2, Pr=1.0, ε=0.1;
(c) Particle velocity components F for different values of β and Mn when β1=0.2, Pr=1.0, ε=0.1; (d) Particle
velocity components G for different values of β and Mn when β=0.2, Pr=1.0, ε=0.1.

and heat transfer of the UCM fluid over a horizontal stretching sheet. The temperature
relaxation parameter L0 is chosen to be unity throughout the computation. In order to
analyze the salient features of the problem, the numerical results are illustrated graphi-
cally in Figs. 2-6. Also the numerical results for the skin friction, the particle velocity and
the density components, the fluid temperature, and the dust-phase temperature at the
surface for different values of the physical parameters are recorded in Table 3.

The transverse velocity f (η), the horizontal velocity f ′(η), the particle transverse ve-
locity F(η) and the particle horizontal velocity G(η) profiles are shown in Figs. 2(a)-(d)
for different values of Mn and β. The general trend is that f ′(η), F(η) and G(η) decrease
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Figure 3: From left to right: (a) Transverse velocity profiles for different values of β1 and Mn when β= 0.2,
Pr=1.0, ε=0.1; (b) Horizontal velocity profiles for different values of β1 and Mn when β=0.2, Pr=1.0, ε=0.1;
(c) Particle velocity components F for different values of β1 and Mn when β=0.2, Pr=1.0, ε=0.1; (d) Particle
velocity components G for different values of β1 and Mn when β=0.2, Pr=1.0, ε=0.1.

monotonically as the distance increases from the surface, whereas f (η) increases as the
distance increases from stretching sheet. It is observed from these figures that f ′(η) and
F(η) profiles decrease with an increase in Mn. This observation holds true even with
particle velocity component F(η); but quite the opposite is true with G(η). Physically it
means that the induction of transverse magnetic field (normal to the flow direction) has
a tendency to induce a drag, known as the Lorentz force, which tends to resist the flow.
It is noticed that the effect of increasing values of β is to reduce the thickness of the fluid
velocity in the boundary layer and increase the dust-phase transverse velocity, as well as
the horizontal velocity component.
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Figure 4: From left to right: (a) Fluid temperature profiles for different values of β and Mn when β1 = 0.2,
Pr=1.0, ε=0.1; (b) Dust-phase temperature profiles for different values of β and Mn when β1 =0.2, Pr=1.0,
ε=0.1.
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Pr=1.0, ε=0.1; (b) Dust-phase temperature profiles for different values of β1 and Mn when β=0.2, Pr=1.0,
ε=0.1.

Figs. 3(a)-(d) exhibit the transverse velocity f (η), the horizontal velocity f ′(η), the
particle transverse velocity F(η) and the particle horizontal velocity G(η) profiles for
several sets of values of Mn and β1. The effect of the magnetic field on the velocity of the
fluid elements above the sheet appears to become less pronounced for the Maxwell fluid,
i.e., by an increase in the elasticity level of the fluid. That is to say that larger velocity can
be expected to arise in MHD flows over stretching sheets if the fluid is elastic. It is evident
from the Figs. 3(a)-(d) that the effect of increasing values of the Maxwell parameter is to
reduce the fluid velocity in the boundary layer and the dust-phase horizontal velocity,
but quite opposite is found in dust-phase transverse velocity.

Figs. 4-6 show the fluid temperature θ(η) and dust-phase temperature θp(η) profiles
for different values of the governing parameters. The general trend is that the fluid-
temperature distribution is unity at the surface, whereas the dust-phase temperature is

http://dx.doi.org/10.4208/aamm.2013.m379
Downloaded from http:/www.cambridge.org/core. Bangalore University, on 24 Oct 2016 at 07:23:58, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.4208/aamm.2013.m379
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


382 K. Vajravelu, K. V. Prasad and S. R. Santhi / Adv. Appl. Math. Mech., 7 (2015), pp. 369-386

 ! " # $ % & ' (   ( " ( $ ( & ( )! (  

 ! " # $ % & ' (   ( ! ( " ( # ( $ ( %

 ! " # $ % & ' (   ( " ( $ ( & ( )! (  

 ! " # $ % & ' (    (  % ( !   ( ! % ( "   ( " %

 ! " # $ % & ' (   ( " ( $ ( & ( )! (  

 ! " # $ % & ' (   ( ! ( " ( #

*
+ , - . / . 0 + , - . / 1 0 + , - 2 / .

3 4 5 6 5 7 5 6 8 7 9 6 5
+ , - . / . 0 + , - . / 1 0 + , - 2 / .

*

+ 4 5 6 5 7 5 6 : 7 9 6 5(

) ; < = > ? @ A B C D E F G H I J K F L G L M I L N K G E N L I N O P < Q L F P O N R < P P L N L S GT K Q E L F O P K S R U V W J L S X Y > Z [ \ S X Y > ] [ X Y > Z >; < = > ? @ K B C ; Q E < R G L M I L N K G E N L I N O P < Q L F P O N R < P P L N L S G T K Q E L FO P K S R U V W J L S X Y > Z [ \ S X Y > ] [ X Y > Z >

; < = > ] @ A B C D E F G H I J K F L G L M I L N K G E N L I N O P < Q L F P O N R < P P L N L S GT K Q E L F O P K S R ^ _ W J L S X Y > Z [ ` N X a > Y [ X Y > a >; < = > ] @ K B C ; Q E < R G L M I L N K G E N L I N O P < Q L F P O N R < P P L N L S G T K Q E L FO P K S R ^ _ W J L S X Y > Z [ ` N X a > Y [ X Y > a >

; < = > b @ A B C D E F G H I J K F L G L M I L N K G E N L I N O P < Q L F P O N R < P P L N L S GT K Q E L F O P K S R ^ _ W J L S X Y > Z [ ` N X a > Y [ X Y > a >; < = > b @ K B C ; Q E < R G L M I L N K G E N L I N O P < Q L F P O N R < P P L N L S G T K Q E L FO P K S R ^ _ W J L S X Y > Z [ ` N X a > Y [ X Y > a >

+ 4 5 6 5 7 5 6 : 7 9 6 5(*
)

c d - . / e f 0 c d - 2 / . 0 c d - f / .

Figure 6: From left to right: (a) Fluid temperature profiles for different values of ε and Pr when β = 0.2,
Mn=1.0, β1=0.2; (b) Dust-phase temperature profiles for different values of ε and Pr when β=0.2, Mn=0.5,
β1 =0.2.

not. However, with the changes in the governing parameters both asymptotically tend
to zero as the distance increases from the boundary. Figs. 4(a) and (b) illustrate the effect
of Mn and β on θ(η). The effect of increasing values of Mn is to increase θ(η) and also
θp(η). From the graphical representation, the magnetic field has a significant effect on
the temperature field. As explained above, the transverse magnetic field gives rise to
a resistive force known as the Lorentz force. This force makes the fluid experience a
resistance by increasing the friction between its layers. Hence, there is an increase in the
temperature profile as well as the dust-phase profile. The effect of β is to decrease the
temperature profile that in turn reduces the thickness of the thermal boundary, whereas
it enhances the dust-phase temperature at the surface: Thus increases the thickness of the
dust-phase temperature.

Figs. 5(a) and (b) exhibit the fluid-temperature distribution and the dust-phase tem-
perature distribution for several sets of values of the Mn and β1. The effect of the mag-
netic field on the temperature field is less significant for Maxwell fluid, i.e., for elastic
liquids. The effect of β1 is to increase the fluid temperature and the dust-phase tempera-
ture. This is due to the fact that the thickening of the thermal boundary layer occurs due
to an increase in the elasticity stress parameter. However, the temperature distribution
asymptotically tends to zero as the distance increases from the boundary. The graphs
for θ(η) and θp(η) for different values of ε and Pr are shown in Figs. 6(a) and (b). These
figures demonstrate that an increase in ε results in an increase in the temperature θ(η) as
well as in θp(η). This is due to the fact that the assumption of temperature dependent
thermal conductivity implies a reduction in the magnitude of the transverse velocity by
a quantity ∂K(T)/∂y as can be seen from the energy equation. Also, we observe that the
effect of Pr is to decrease both θ(η) and θp(η). Finally, the effects of all the physical param-
eters on the surface-velocity gradient, the particle-velocity components, particle-density
component, the temperature gradient, and the dust-phase temperature at the sheet are
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presented in Table 3. It is of interest to note that the effect β1, Mn and β is to increase
the magnitude of the skin friction coefficient. However, the effect of ε, β1 and Mn is to
decrease the magnitude of the temperature gradient at the sheet; but the reverse trend is
observed with an increase in Pr and β. From Table 3, it is further noticed that the effect of
Mn and β is to increase the dust-phase temperature and the particle velocity component.

5 Conclusions

Some of the interesting observations are:

• The effect of the fluid-particle interaction and the magnetic field in the Maxwell
fluid flow is to decrease the fluid velocity in the boundary layer.

• The fluid-particle interaction reduces the fluid temperature: But, quite opposite is
true in particle phase temperature.

• The variable thermal conductivity enhances the fluid temperature and the particle
phase temperature in the flow region.

• The thermal boundary layers of the fluid and the dust phase are significantly affect-
ed by the Prandtl number and its effect is to decrease the thermal boundary layer
thickness.

Nomenclature

A,A1,B1 constants

B0 uniform magnetic field

b stretching rate, positive constant

C f skin-friction

cp specific heat capacity of the fluid

cs specific heat capacity of the dust particles

D average radius of the dust particles

f dimensionless stream function

F,G particle velocity component

H particle density components

k Stokes’ resistance

K(T) thermal conductivity

K∞ thermal conductivity of the fluid far away from the sheet

kw thermal conductivity at the surface
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l reference length scale

L0 temperature relaxation parameter

Mn magnetic parameter

Nux Nusselt number

Pr Prandtl number

qw heat transfer from the surface of the sheet

Rex local Reynolds number

T fluid temperature

Tp temperature of the dust particle

Tw(x) temperature of the stretching sheet

T∞ ambient temperature

u,v velocity components in thex,ydirection

up,vp velocity components of the dust particles in thex,ydirection

Uw(x) velocity of the stretching sheet

x,y cartesian coordinates

α(T) temperature dependent thermal diffusivity

β fluid particle interaction parameter

β1 Maxwell parameter

γp velocity relaxation time

γT temperature relaxation time

δi (i=1 to 6) unknown initial conditions

δ constant defined in Eq. (2.10)

ν∞ kinematic viscosity

ρp density of the particle phase

ρr relative density

ρ∞ density of the fluid

σ electric conductivity

η similarity variable

λ relaxation time of fluid

∆T characteristic temperature

ε variable thermal conductivity parameter

θ dimensionless fluid temperature

θp dimensionless dust-phase temperature

φ confluent hypergeometric function

µ∞ coefficient of viscosity
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τ relaxation time of particles

τw skin friction or shear stress

w condition at the stretching surface

∞ condition at infinity
′ differentiation with respect to η
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