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Abstract In the present paper, we endeavor to perform a numerical analysis in connection with the

boundary layer flow induced in a quiescent fluid by a continuous sheet stretching with velocity uw
(x) �x1/3 with heat transfer. The effects of thermal radiation using the nonlinear Rosseland approx-

imation are investigated. We search for similarity solutions and reduce the problem to a couple of

ordinary differential equations containing three dimensionless parameters: the radiation parameter

NR, the temperature ratio parameter hw and the Prandtl number Pr. The computational results for

velocity, temperature and heat transfer characteristics are presented in both graphical and tabular

forms.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

In contrast to the well-known Blasius flow problem (see, for in-

stance, Cortell, 2005), and ref. therein) which involves laminar
viscous boundary layer fluid flow above a fixed flat plate, the
flow of a viscoelastic fluid over a rigid plate moving steadily

in an otherwise quiescent fluid is sometimes referred to as Saki-
adis flow (see Sakiadis, 1961) after the pioneering work of that
researcher. Ahmad and Al-Barakati (2009) obtained an

approximate analytical solution of the Blasius problem. Saki-
adis flow’s studies were recently dealt by Sadeghy et al.
Saud University.
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(2005) in their work on boundary layer of an upper-convected
Maxwell fluid flow where the role played by fluid’s elasticity in

the flow characteristics was analyzed.
When the difference between the sheet and the ambient

temperature is large the thermal radiation effects become
important, and also at high operating temperature the presence

of thermal radiation alters the thermal boundary layer struc-
ture and the rate of heat transfer also results altered. In such
industrial processes knowledge of radiative heat transfer be-

comes relevant. Abo-Eldahab and Azzam Gamal El-Din
(2005) gave examples like nuclear power plants, gas turbines,
satellites, etc. Viskanta and Grosh (1962) studied boundary

layer flow in thermal radiation absorbing and emitting media
by using the Rosseland approximation (Rosseland, 1931).
Numerical results for hydro-magnetic mixed convection flow

over a permeable non-isothermal wedge were reported by
Prasad et al. (2013). Hossain et al. (1999) studied thermal
radiation’s effects using the Rosseland diffusion approxima-
tion on natural convection flow of an optically thick viscous
ing Saud University.
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Nomenclature

cP Specific heat of the fluid at constant pressure

J kg�1 K�1

d
dg Derivative with respect to g
f Dimensionless stream function
k* Rosseland mean absorption coefficient m�1

k Fluid thermal conductivity W m�1 K�1

L Characteristic length m
NR Radiation parameter

Pr Prandtl number
qr Component of radiative heat flux in y direction

W m�2

T temperature K
u, v Velocity components along x and y directions,

respectively m s�1

x, y Cartesian coordinates along the plate and normal

to it, respectively. m
Greek symbols
a Thermal diffusivity m2 s�1

g Dimensionless similarity variable

h Dimensionless temperature
l Absolute viscosity kg m�1 s�1

t Kinematic viscosity m2 s�1

q Density kg m�3

r* Stefan-Boltzmann constant W m�2 K�4

Subscripts

w, 1 Conditions at the surface and within the free
stream, respectively

Superscript
prime Derivative with respect to g
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incompressible flow past a uniformly heated vertical porous
surface with constant suction, and further, Hossain et al.

(2001) analyzed the effect of variable viscosity on this type
of flow. On the other hand, Raptis and Perdikis (1998) used
a linearized form of the aforesaid Rosseland approximation

in view to analyze the steady flow of a visco-elastic fluid past
an unmoving surface. These simplifications permit an easier
analysis, and many investigations (see, for instance, Cortell,

2008a,2011a; Abdul Hakeem et al., 2013) have been carried
out in the recent past that deal with thermal studies by apply-
ing the cited linearized form, which is derived by assuming
sufficiently small temperature differences within the flow that

may assure to express T4 as a linear function of temperature.
Studies about motion and mass transfer with chemically reac-
tive species in a porous space were recently undertaken by

Cortell (2007a, 2007b). Moreover, treatments to the radiative
heating for flows generated by linear/nonlinear stretching
sheets enclosing magneto-hydrodynamics, non-Newtonian

fluids, porous media, etc. constitute analytical or numerical at-
tempts which have been made in the recent past (Arpaci, 1968;
Cortell 2008b, 2011b, 2012a, 2012b; Turkyilmazoglu, 2011;

Misra and Sinha, 2013). The problem of steady micropolar
fluid flow past a stretching surface has been devised by many
authors (see, for instance, Ishak, 2010; Hsiao, 2010) and even,
very recently, unsteady fluid flow with (Hsiao, 2012) or with-

out (Bachok et al., 2011) thermal radiation effects has also
been analyzed.

One of the objectives of the present paper is to extend the

investigation of Cortell (2008c) to analyze the Sakiadis flow
generated by a sheet stretched with a velocity which is assumed
to be proportional to the x1/3quantity, x being the distance

from the slit. We also assume appropriate boundary conditions
for the energy equation that may assure the existence of
similarity solutions (i.e., constant temperature at the surface)

when radiative nonlinear heat transfer is studied. Very re-
cently, Rahman and Eltayeb (2013), Pantokratoras and Fang
(2013) used the Rosseland diffusion approximation in studying
radiative nonlinear heat transfer in different geometries.

Unlike the linearized Rosseland approximation which is
derived by assuming sufficiently small temperature differences
between the plate and the ambient fluid, when use is made of
the nonlinear Rosseland diffusion approximation one can ob-
tain results for both small and large differences between Tw

(constant surface temperature) and T1 (the constant ambient
fluid temperature). It is also known that the inclusion of non-
linear radiative effects in the energy equation had led to a

highly nonlinearity in the governing equations (see El-Hakim
and Rashad, 2007).

The fluid is at rest and the motion is created by the surface

whose velocity varies nonlinearly with the distance x from a
fixed point and the sheet is held at a temperature higher than
the temperature T1 of the ambient fluid. For the stated prob-
lem and to our knowledge, the presented data on thermal anal-

ysis have not been considered before.
This paper aims to find similarity numerical solutions for

problem above-mentioned. In Section 2 we shall examine the

analysis of the flow and its mechanical characteristics. Heat
transfer of a viscous fluid over a nonlinear stretching sheet in
the presence of thermal radiation will be analyzed in Sections

3–4 by means of the nonlinear Rosseland diffusion approxima-
tion. The paper ends with its conclusions in Section 5.

2. Flow analysis

Let us consider the flow of an incompressible viscous fluid past
a flat sheet coinciding with the plane y = 0, the flow being con-

fined to y> 0. Two equal and opposite forces are applied
along the x-axis so that the wall is stretched keeping the origin
fixed. The fluid is assumed to be a gray, absorbing-emitting but
non-scattering medium. Use is made of usual notation and

then we can express the basic equations describing the conser-
vation of mass and momentum in the boundary layer as

@u

@x
þ @v
@y
¼ 0; ð1Þ

u
@u

@x
þ v

@u

@y
¼ t

@2u

@y2
; ð2Þ

where (x, y) denotes the Cartesian coordinates along the sheet
and normal to it, u and v are the velocity components of the

fluid in the x and y directions, respectively, and tð¼ l
qÞ is the
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kinematic viscosity; q is the fluid density and l is the absolute

viscosity.
The mass and momentum Eqs. (1) and (2) must be solved

subject to the boundary conditions

uwðxÞ ¼
t

L
4
3

x
1
3; v ¼ 0 at y ¼ 0; u! 0 as y!1: ð3Þ

where L is a characteristic length.
Now we introduce the following non-dimensional variables.

g ¼ y
x
�1
3

L
2
3

; u ¼ t

L
4
3

x
1
3f0ðgÞ; v ¼ � t

L
2
3

x
�1
3
½2f� gf0�

3
; ð4Þ

It is clear that u and v satisfy the equation of continuity (i.e.,
Eq. (1)). Introducing these new variables in Eq. (2) we get

3
d3f

dg3
þ 2f

d2f

dg2
�
�
df

dg

�2

¼ 0; ð5Þ

where d
dg denotes differentiation with respect to the indepen-

dent similarity variable g and f is the dimensionless stream

function. The boundary conditions (3) can now be written as

f ¼ 0; f0 ¼ 1 at g ¼ 0; f0 ! 0 as g!1: ð6Þ

The numerical complete solution to the problem (5–6) is de-

picted in Fig. 1. It was already solved by Cortell (2008c)
numerically by employing a Runge-Kutta algorithm for high
order initial value problems (see Cortell, 1993). Based on that

numerical solution, we have f00(0) = �0.677647 and we will
utilize this numerical result in the following. Further, it is ob-
served from Fig. 1 that the velocity component u decreases in
the boundary layer with increase of g.

3. Heat transfer analysis

By using usual boundary layer approximations, the equation

of the energy for temperature T in the presence of thermal
radiation is given by

u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
� 1

qcP

@qr
@y

ð7Þ

where a is the thermal diffusivity, cP is the specific heat of the
fluid at constant pressure and qr is the radiative heat flux in y
direction.

Using the Rosseland approximation for radiation
(Rosseland, 1931), the radiative heat flux is simplified as
Figure 1 Plot of the functions f,
qr ¼ �
4r�

3k�
@T4

@y
; ð8Þ

where r* and k* are the Stefan-Boltzmann constant and the
mean absorption coefficient, respectively.

At this stage, it is necessary to note that for a boundary
layer flow over a horizontal flat plate (see Pantokratoras and
Fang, 2013), from Eq. (8) we get

qr ¼ �
16r�

3k�
T3 dT

dy
; ð9Þ

where T is the temperature across the boundary layer. We have
supposed T as x-independent, and in view to Eq. (9), Eq. (7)

reduces to

u
@T

@x
þ v

@T

@y
¼ d

dy
ðaþ 16r�T3

3qcPk
�Þ
dT

dy

� �
: ð10Þ

where a ¼ k
qcP

, k being the thermal conductivity. From the

above equation it is seen that the effect of radiation is to
enhance the variable thermal diffusivity, which is now
T-dependent.

The boundary conditions are

T ¼ Tw at y ¼ 0; T! T1 as y!1 ð11Þ

with TwæT1, and T1 is the fluid temperature far away from the
surface, Tw is the temperature at the wall.

By defining the non dimensional temperature h(g) as

hðgÞ ¼ T� T1
Tw � T1

ð12Þ

we obtain T = T1(1 + (hw � 1)h), with hw ¼ Tw

T1
, hw(æ1)being

the temperature ratio parameter.
Taking into account the above we get

�@qr
@y
¼ 16r�T3

1
3k�

:
x
�2
3

L
4
3

ðTw � T1Þ:
@

@g
½1þ hðhw � 1Þ�3:h0
h i

ð13Þ

Substituting Eqs. (4) and (13) into Eq. (7) and after some alge-

bra one can write

�2t
3

fh0 ¼ k

qcP
h00 þ 16r�T3

1
3qcPk

� :
@

@g
½½1þ hðhw � 1Þ�3:h0� ð14Þ

and further the final energy equation can be expressed as

4

3NR

:
d

dg
½ð1þ hðhw � 1ÞÞ3h0� þ h00 ¼ � 2

3
Pr fh0: ð15Þ
f0 and f0 0 for problem (5 and 6)
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In the above equation Prð¼ t
aÞ is the Prandtl number, both d

dg
and the prime denote differentiation with respect to g and
NR ¼ k�k

4r�T3
1
is the radiation parameter.

The boundary conditions for h(g) can now be expressed as

h ¼ 1 at g ¼ 0; h! 0 as g!1 ð16Þ

Taking into account the thermal radiation, we can express the
surface heat flux as:

qw ¼ �k
@T

@y

� �
w

þ ðqrÞw

¼ � kðTw � T1Þ
L

x

L

� ��1
3

1þ 4h3
w

3NR

� �
h0ð0Þ: ð17Þ

with hwæ1. NR fi1 implies no thermal radiation’s effects, and
then Eqs. (15) and (17) reduce to

h00 þ 2

3
Pr fh0 ¼ 0; qw ¼ �k

Tw � T1
L

x

L

� ��1
3

:h0ð0Þ; ð18Þ

which coincide with Eqs. (17) and (20) in Cortell, 2008c putting
there m ¼ 0 and Ec ¼ 0 (i.e., constant surface temperature and

without viscous dissipation) along with k0 = 1 (no thermal
radiation’s effects).

4. Results and discussion

Without a break, we begin now the development of the proce-
dure for completing the numerical solution for h(g). There is

no any analytical solution for the momentum transfer problem
and, accordingly, one had to use numerical techniques. It is
clear that f0 0(0) = �0.677647 (Cortell, 2008c) in that problem.
Hence, the present numerical analysis extends the most recent

thermal study of Cortell, 2008c to the case of nonlinear Rosse-
land approximation for thermal radiation, and with its use we
will obtain numerical values of h0(0) (i.e., temperature-gradient

at the wall) in order to show the influences of the dimensionless
parameters Pr, hw and NR onto the heat transfer characteristics
and temperature distributions. Since the flow problem is

uncoupled from the thermal problem, changes in the values
of Pr, hw and NR will not affect the fluid velocity. For this rea-
son, both the function f and its derivatives are identical in the
complete problem (flow and heat transfer). In view of the

above discussions, use will be made of f0 0(0) = �0.677647
Figure 2 Effects of Prandtl number Pr on te
(Cortell, 2008c) and, with this result, we shall solve numerically
the momentum and heat transfer problems. The best approxi-
mate for solving Eqs. (5), (6), (15–16) that can be used is the

Runge-Kutta fourth order numerical method with shooting
procedure (see White, 1991). Many other results are obtained
throughout this work, and hence a selected set of results is

presented graphically in Figs. 2–4 in order to analyze the dis-
tinct physical aspects of the problem. The effects of Prandtl
number Pr on temperature profiles are depicted in Fig. 2 at

hw ¼ 1:5 and NR ¼ 1: From this figure one can immediately
observe that the thermal boundary layer thicknesses decrease
drastically with an increase in Pr and, as a consequence, an in-
crease (in absolute sense) in the wall temperature gradient

occurs. Low Prandtl number Pr indicates fluids with large ther-
mal conductivity and this produces thicker thermal boundary
layer structures than that for high Pr number.

Fig. 3 illustrates the effect of temperature ratio parameter
hw on h(g) curves. It should be noticed that increasing the
temperature ratio parameter hw increases the thermal state of

the fluid, resulting in increases in temperature profiles. How-
ever, as the thermal radiation parameter NR increases, it is
observed from Fig. 4 that the temperature profiles decrease

and then the thermal boundary layer thicknesses shrink.
As was already pointed out by Rahman and Eltayeb (2013)

when use is made of the nonlinear Rosseland approximation to
take into account thermal radiatiońs effect a point of inflection

appeared on temperature profiles. In this paper, making use of
our numerical approach, we find out the full set of g1 (i.e., the
extent of our integration domain), h(g), and h0(g) results, and
for each studied case, we will be able to give the location of
the aforesaid point onto temperature distributions.

In Table 1 we display some numerical results of h(g) and
h0(g) when Pr ¼ 3; hw ¼ 1:5 and NR ¼ 1:. The computed values
displayed in Table 1 indicate that the point of inflection for the
h(g) curve is located at g = 0.84 when |h0(g)| reaches its maxi-

mum value in the interval [0, g1]. For each set of fixed values
of the three dimensionless parameters entering the problem, it
is clear that an only missed value at g = 0 is guessed in our
numerical approach, that is, the temperature-gradient at the

wall h0(0). The suitable guess value is chosen and the integra-
tion for heat transfer problem, Eqs. (15), (16), is carried out
as an initial value problem by the Runge-Kutta shooting meth-

od of fourth order. For each numerical solution h(g) the value
mperature profiles at hw ¼ 1:5 and NR ¼ 1.



Figure 4 Effects of the thermal radiation parameter NR on temperature profiles at Pr ¼ 3 and hw ¼ 2.

Figure 3 Effects of the temperature ratio parameter hw on temperature profiles at Pr ¼ 3 and NR ¼ 1:.

Table 1 Some numerical results for h(g) and h0ðgÞ with

Dg = 0.02 when Pr ¼ 3; hw ¼ 1:5 and NR ¼ 1 .

g h(g) �h0ðgÞ
0 1 0.304279

0.2 0.93773 0.317966

0.4 0.87303 0.328431

0.6 0.80659 0.335256

0.8 0.73919 0.338071

0.82 0.73243 0.338119

0.84 0.72567 0.338125

0.86 0.71891 0.338087

1 0.67165 0.336591

3 0.15644 0.145608

5 0.01999 0.021663

10 0.00015 0.000086
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of h0(0) is iteratively estimated under the simultaneous assump-

tions hð1Þ ! 0 and jh0ð1Þj ! 0 (see Table 1 in which temper-
ature and temperature gradient profiles tend to zero at infinity
simultaneously in an asymptotical fashion). Due to the fact no
heat fluxes should exist outside the thermal boundary layer we
need here to adopt the extra boundary condition
dh
dg! 0 as g!1, and in this manner we circumvent possible
unphysical behaviors of the solution. The latter was already
established in the literature for related problems (see Van Gor-

der and Vajravelu, 2010). Also, in accord with Van Gorder and
Vajravelu (2010), we also adopted the extra boundary condi-
tion d2f

dg2 ! 0 as g!1 in Cortell (2008c) with a view to obtain

f00(0) = �0.677647 numerically; however, the aforementioned
numerical treatment has been used in our studies since early
1990s (see, for example, Cortell, 1994). On the other hand, dur-

ing the last years, numerous comparisons between our own
numerical data and results obtained by means of several
numerical procedures were presented in the open literature
(note, for instance, the recently published numerical data by

Rohni et al. (2012)). In Rohni et al. (2012) a completion for
the shrinking sheet case but without thermal radiation effects
of the Cortell’s paper (Cortell, 2012a) was carried out. Regard-

ing existence and uniqueness of the solution, which we do not
analyze in this short communication, boundary conditions
(Van Gorder, 2010) and even additional terms in the energy

equation (i.e., dissipative term) (Turkyilmazoglu and Pop,
2013) play an important role in these types of nonlinear
boundary value problems.



Table 2 Flow and heat transfer characteristics for several

values of the parameters entering the problem.

�f00ð0Þ Pr hw NR �h0(0)

0.677647 Cortell (2008c) 1 1.5 1 0.131636

3 0.304279

6 0.478746

10 0.652147

3 1.5 1 0.304279

2 0.169978

3 0.064057

3 2 0.5 0.100474

1 0.169978

3 0.335764

5 0.434466
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Finally, the values of the wall temperature gradient

[�h0(0)] as a function of all the parameters of the thermal
boundary layer treated in this work have been tabulated in
Table 2. It is apparent from this table that the effect of

Prandtl number Pr on [�h0(0)] is such that the |h0(0)| value
increases sharply with an increase in Pr and hence produces
an increase in the heat transfer rate. As can be expected,

the heat transfer rate |h0(0)| also increases as NR increases
with all other parameter fixed, that is, an increase in the
radiation parameter NR will produce a decrease in the

thermal boundary layer thickness, associated with the reduc-
tion in the temperature profiles. However, an augment in hw
yields an augment in h(g) and the rate of heat transfer tends
to zero as the temperature ratio parameter hw increases (see

Table 2).

5. Conclusions

The thermal radiation effects on flow influenced by a nonlin-
early stretching sheet were studied numerically. The radiative
heat flux term in the energy equation is introduced by means

of the nonlinear Rosseland diffusion approximation. The ef-
fects of various physical parameters like Pr, hw and NR on heat
transfer phenomena have been studied. It should also be con-

cluded that in contrast to the linear Rosseland diffusion
approximation, when use is made of the nonlinear one, the
problem is also governed by the newly temperature ratio

parameter hw. Similarity solutions for the case of stretching
materials which have a wide variety of technical and environ-
mental applications were found for all the aforementioned
dimensionless physical parameters. The results presented indi-

cate quite clearly that hw, which is an indicator of the small/
large temperature difference between the surface and the ambi-
ent fluid, has a relevant effect on heat transfer characteristics

and temperature distributions within the flow region generated
by an isothermal sheet stretched in a non-linear fashion. From
the above numerical research, the following conclusions may

be drawn:

1. An increasing Prandtl number Pr causes diminution in the
thickness of the thermal boundary layer.

2. For fixed Pr and NR, the rate of heat transfer jh0(0)| extin-
guishes as the temperature ratio parameter hw increases.
3. From a qualitative point of view, the temperature ratio

parameter hw and the thermal radiation parameter NR have
the opposite effect, that is, temperature increases with
increasing hw, whereas NR does the reverse.
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