34 research outputs found

    Spontaneous mutation rate in the smallest photosynthetic eukaryotes

    Get PDF
    Mutation is the ultimate source of genetic variation, and knowledge of mutation rates is fundamental for our understanding of all evolutionary processes. High throughput sequencing of mutation accumulation lines has provided genome wide spontaneous mutation rates in a dozen model species, but estimates from nonmodel organisms from much of the diversity of life are very limited. Here, we report mutation rates in four haploid marine bacterial-sized photosynthetic eukaryotic algae; Bathycoccus prasinos, Ostreococcus tauri, Ostreococcus mediterraneus, and Micromonas pusilla. The spontaneous mutation rate between species varies from μ = 4.4 × 10−10 to 9.8 × 10−10 mutations per nucleotide per generation. Within genomes, there is a two-fold increase of the mutation rate in intergenic regions, consistent with an optimization of mismatch and transcription-coupled DNA repair in coding sequences. Additionally, we show that deviation from the equilibrium GC content increases the mutation rate by ∼2% to ∼12% because of a GC bias in coding sequences. More generally, the difference between the observed and equilibrium GC content of genomes explains some of the inter-specific variation in mutation rates

    Visual search in the real world:Color vision deficiency affects peripheral guidance, but leaves foveal verification largely unaffected

    Get PDF
    Background: People with color vision deficiencies report numerous limitations in daily life. However, they use basic color terms systematically and in a similar manner as people with people with normal color vision. We hypothesize that a possible explanation for this discrepancy between color perception and behavioral consequences might be found in the gaze behavior of people with color vision deficiency.Methods: A group of participants with color vision deficiencies and a control group performed several search tasks in a naturalistic setting on a lawn.Results: Search performance was similar in both groups in a color-unrelated search task as well as in a search for yellow targets. While searching for red targets, color vision deficient participants exhibited a strongly degraded performance. This was closely matched by the number of fixations on red objects shown by the two groups. Importantly, once they fixated a target, participants with color vision deficiencies exhibited only few identification errors. Conclusions: Participants with color vision deficiencies are not able to enhance their search for red targets on a (green) lawn by an efficient guiding mechanism. The data indicate that the impaired guiding is the main influence on search performance, while foveal identification (verification) largely unaffected

    Maternal liver metabolic response to chronic Vitamin D deficiency is determined by mouse strain genetic background

    Get PDF
    Background: Liver metabolite concentrations have the potential to be key biomarkers of systemic metabolic dysfunction and overall health. However, for most conditions we do not know the extent to which genetic differences regulate susceptibility to metabolic responses. This limits our ability to detect and diagnose effects in heterogeneous populations. Objectives: Here, we investigated the extent to which naturally occurring genetic differences regulate maternal liver metabolic response to vitamin D deficiency (VDD), particularly during perinatal periods when such changes can adversely affect maternal and fetal health. Methods: We used a panel of 8 inbred Collaborative Cross (CC) mouse strains, each with a different genetic background (72 dams, 3-6/treatment group, per strain). We identified robust maternal liver metabolic responses to vitamin D depletion before and during gestation and lactation using a vitamin-D-deficient (VDD; 0 IU vitamin D3/kg) or -sufficient diet (1000 IU vitamin D3/kg). We then identified VDD-induced metabolite changes influenced by strain genetic background. Results: We detected a significant VDD effect by orthogonal partial least squares discriminant analysis (Q2 = 0.266, pQ2 = 0.002): primarily, altered concentrations of 78 metabolites involved in lipid, amino acid, and nucleotide metabolism (variable importance to projection score ≥1.5). Metabolites in unsaturated fatty acid and glycerophospholipid metabolism pathways were significantly enriched [False Discovery Rate (FDR) <0.05]. VDD also significantly altered concentrations of putative markers of uremic toxemia, acylglycerols, and dipeptides. The extent of the metabolic response to VDD was strongly dependent on genetic strain, ranging from robustly responsive to nonresponsive. Two strains (CC017/Unc and CC032/GeniUnc) were particularly sensitive to VDD; however, each strain altered different pathways. Conclusions: These novel findings demonstrate that maternal VDD induces different liver metabolic effects in different genetic backgrounds. Strains with differing susceptibility and metabolic response to VDD represent unique tools to identify causal susceptibility factors and further elucidate the role of VDD-induced metabolic changes in maternal and/or fetal health for ultimately translating findings to human populations

    Nicotinic acetylcholine receptor β2 subunit gene implicated in a systems-based candidate gene study of smoking cessation

    Get PDF
    Although the efficacy of pharmacotherapy for tobacco dependence has been previously demonstrated, there is substantial variability among individuals in treatment response. We performed a systems-based candidate gene study of 1295 single nucleotide polymorphisms (SNPs) in 58 genes within the neuronal nicotinic receptor and dopamine systems to investigate their role in smoking cessation in a bupropion placebo-controlled randomized clinical trial. Putative functional variants were supplemented with tagSNPs within each gene. We used global tests of main effects and treatment interactions, adjusting the P-values for multiple correlated tests. An SNP (rs2072661) in the 3′ UTR region of the β2 nicotinic acetylcholine receptor subunit (CHRNB2) has an impact on abstinence rates at the end of treatment (adjusted P = 0.01) and after a 6-month follow-up period (adjusted P = 0.0002). This latter P-value is also significant with adjustment for the number of genes tested. Independent of treatment at 6-month follow-up, individuals carrying the minor allele have substantially decreased the odds of quitting (OR = 0.31; 95% CI 0.18–0.55). Effect of estimates indicate that the treatment is more effective for individuals with the wild-type (OR = 2.14, 95% CI 1.20–3.81) compared with individuals carrying the minor allele (OR = 0.83, 95% CI 0.32–2.19), although this difference is only suggestive (P = 0.10). Furthermore, this SNP demonstrated a role in the time to relapse (P = 0.0002) and an impact on withdrawal symptoms at target quit date (TQD) (P = 0.0009). Overall, while our results indicate strong evidence for CHRNB2 in ability to quit smoking, these results require replication in an independent sample

    Genome architecture enables local adaptation of Atlantic cod despite high connectivity

    Get PDF
    Adaptation to local conditions is a fundamental process in evolution; however, mechanisms maintaining local adaptation despite high gene flow are still poorly understood. Marine ecosystems provide a wide array of diverse habitats that frequently promote ecological adaptation even in species characterized by strong levels of gene flow. As one example, populations of the marine fish Atlantic cod (Gadus morhua) are highly connected due to immense dispersal capabilities but nevertheless show local adaptation in several key traits. By combining population genomic analyses based on 12K single nucleotide polymorphisms with larval dispersal patterns inferred using a biophysical ocean model, we show that Atlantic cod individuals residing in sheltered estuarine habitats of Scandinavian fjords mainly belong to offshore oceanic populations with considerable connectivity between these diverse ecosystems. Nevertheless, we also find evidence for discrete fjord populations that are genetically differentiated from offshore populations, indicative of local adaptation, the degree of which appears to be influenced by connectivity. Analyses of the genomic architecture reveal a significant overrepresentation of a large ~5 Mb chromosomal rearrangement in fjord cod, previously proposed to comprise genes critical for the survival at low salinities. This suggests that despite considerable connectivity with offshore populations, local adaptation to fjord environments may be enabled by suppression of recombination in the rearranged region. Our study provides new insights into the potential of local adaptation in high gene flow species within fine geographical scales and highlights the importance of genome architecture in analyses of ecological adaptation
    corecore