176 research outputs found

    EDGE: A new approach to suppressing numerical diffusion in adaptive mesh simulations of galaxy formation

    Get PDF
    We introduce a new method to mitigate numerical diffusion in adaptive mesh refinement (AMR) simulations of cosmological galaxy formation, and study its impact on a simulated dwarf galaxy as part of the ‘EDGE’ project. The target galaxy has a maximum circular velocity of 21 km s−1 but evolves in a region that is moving at up to 90 km s−1 relative to the hydrodynamic grid. In the absence of any mitigation, diffusion softens the filaments feeding our galaxy. As a result, gas is unphysically held in the circumgalactic medium around the galaxy for 320 Myr, delaying the onset of star formation until cooling and collapse eventually triggers an initial starburst at z = 9. Using genetic modification, we produce ‘velocity-zeroed’ initial conditions in which the grid-relative streaming is strongly suppressed; by design, the change does not significantly modify the large-scale structure or dark matter accretion history. The resulting simulation recovers a more physical, gradual onset of star formation starting at z = 17. While the final stellar masses are nearly consistent (4.8 × 106 M and 4.4 × 106 M for unmodified and velocity-zeroed, respectively), the dynamical and morphological structure of the z = 0 dwarf galaxies are markedly different due to the contrasting histories. Our approach to diffusion suppression is suitable for any AMR zoom cosmological galaxy formation simulations, and is especially recommended for those of small galaxies at high redshif

    Molecular evidence for gender differences in the migratory behaviour of a small seabird

    Get PDF
    Molecular sexing revealed an unexpectedly strong female bias in the sex ratio of pre-breeding European Storm Petrels (Hydrobates pelagicus), attracted to playback of conspecific calls during their northwards migration past SW Europe. This bias was consistent across seven years, ranging from 80.8% to 89.7% female (mean annual sex ratio ± SD = 85.5% female ±4.1%). The sex ratio did not differ significantly from unity (i.e., 50% female) among (i) Storm Petrel chicks at a breeding colony in NW France, (ii) adults found dead on beaches in Southern Portugal, (iii) breeding birds attending nest burrows in the UK, captured by hand, and (iv) adults captured near a breeding colony in the UK using copies of the same sound recordings as used in Southern Europe, indicating that females are not inherently more strongly attracted to playback calls than males. A morphological discriminant function analysis failed to provide a good separation of the sexes, showing the importance of molecular sexing for this species. We found no sex difference in the seasonal or nocturnal timing of migration past Southern Europe, but there was a significant tendency for birds to be caught in sex-specific aggregations. The preponderance of females captured in Southern Europe suggests that the sexes may differ in migration route or in their colony-prospecting behaviour during migration, at sites far away from their natal colonies. Such differences in migration behaviour between males and females are poorly understood but have implications for the vulnerability of seabirds to pollution and environmental change at sea during the non-breeding season

    The DAMIC-M experiment: Status and first results

    Get PDF
    The DAMIC-M (DArk Matter In CCDs at Modane) experiment employs thick, fully depleted silicon charged-coupled devices (CCDs) to search for dark matter particles with a target exposure of 1 kg-year. A novel skipper readout implemented in the CCDs provides single electron resolution through multiple non-destructive measurements of the individual pixel charge, pushing the detection threshold to the eV-scale. DAMIC-M will advance by several orders of magnitude the exploration of the dark matter particle hypothesis, in particular of candidates pertaining to the so-called “hidden sector.” A prototype, the Low Background Chamber (LBC), with 20g of low background Skipper CCDs, has been recently installed at Laboratoire Souterrain de Modane and is currently taking data. We will report the status of the DAMIC-M experiment and first results obtained with LBC commissioning data

    In utero and childhood exposure to tobacco smoke and multi-layer molecular signatures in children

    Get PDF
    Background The adverse health effects of early life exposure to tobacco smoking have been widely reported. In spite of this, the underlying molecular mechanisms of in utero and postnatal exposure to tobacco smoke are only partially understood. Here, we aimed to identify multi-layer molecular signatures associated with exposure to tobacco smoke in these two exposure windows. Methods We investigated the associations of maternal smoking during pregnancy and childhood secondhand smoke (SHS) exposure with molecular features measured in 1203 European children (mean age 8.1 years) from the Human Early Life Exposome (HELIX) project. Molecular features, covering 4 layers, included blood DNA methylation and gene and miRNA transcription, plasma proteins, and sera and urinary metabolites. Results Maternal smoking during pregnancy was associated with DNA methylation changes at 18 loci in child blood. DNA methylation at 5 of these loci was related to expression of the nearby genes. However, the expression of these genes themselves was only weakly associated with maternal smoking. Conversely, childhood SHS was not associated with blood DNA methylation or transcription patterns, but with reduced levels of several serum metabolites and with increased plasma PAI1 (plasminogen activator inhibitor-1), a protein that inhibits fibrinolysis. Some of the in utero and childhood smoking-related molecular marks showed dose-response trends, with stronger effects with higher dose or longer duration of the exposure. Conclusion In this first study covering multi-layer molecular features, pregnancy and childhood exposure to tobacco smoke were associated with distinct molecular phenotypes in children. The persistent and dose-dependent changes in the methylome make CpGs good candidates to develop biomarkers of past exposure. Moreover, compared to methylation, the weak association of maternal smoking in pregnancy with gene expression suggests different reversal rates and a methylation-based memory to past exposures. Finally, certain metabolites and protein markers evidenced potential early biological effects of postnatal SHS, such as fibrinolysis

    Progress Report on Target Development

    Get PDF
    The present document is the D08 deliverable report of work package 1 (Target Development) from the MEGAPIE TEST project of the 5th European Framework Program. Deliverable D08 is the progress report on the activities performed within WP 1. The due date of this deliverable was the 5th month after the start of the EU project. This coincided with a technical status meeting of the MEGAPIE Initiative, that was held in March 2002 in Bologna (Italy). The content of the present document reflects the status of the MEGAPIE target development at that stage. It gives an overview of the Target Design, the related Design Support activities and the progress of the work done for the safety assessment and licensing of the target

    Topological insights in polynuclear Ni/Na coordination clusters derived from a schiff base ligand

    Get PDF
    This article presents the syntheses, crystal structures, topological features and magnetic properties of two NiII/NaI coordination clusters (CCs) formulated [NiII3Na(L1)3(HL1 (MeOH)2] (1) and [NiII6Na(L1)5(CO3)(MeO (MeOH)3(H2O)3]·4(MeOH) 2(H2O) [2 4(MeOH) 2(H2O)] where H2L1 is the semi rigid Schiff base ligand (E)-2-(2-hydroxy-3 methoxybenzylideneamino)-phenol). Compound 1 possesses a rare NiII3NaI cubane (3M4-1) topology and compound 2 is the first example in polynuclear Ni/Na chemistry that exhibits a 2,3,4M7-1 topology

    Nociceptors: a phylogenetic view

    Get PDF
    The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt “detect and protect” system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels

    A MSFD complementary approach for the assessment of pressures, knowledge and data gaps in Southern European Seas : the PERSEUS experience

    Get PDF
    PERSEUS project aims to identify the most relevant pressures exerted on the ecosystems of the Southern European Seas (SES), highlighting knowledge and data gaps that endanger the achievement of SES Good Environmental Status (GES) as mandated by the Marine Strategy Framework Directive (MSFD). A complementary approach has been adopted, by a meta-analysis of existing literature on pressure/impact/knowledge gaps summarized in tables related to the MSFD descriptors, discriminating open waters from coastal areas. A comparative assessment of the Initial Assessments (IAs) for five SES countries has been also independently performed. The comparison between meta-analysis results and IAs shows similarities for coastal areas only. Major knowledge gaps have been detected for the biodiversity, marine food web, marine litter and underwater noise descriptors. The meta-analysis also allowed the identification of additional research themes targeting research topics that are requested to the achievement of GES. 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.peer-reviewe

    Multi-omics signatures of the human early life exposome

    Get PDF
    Environmental exposures during early life play a critical role in life-course health, yet the molecular phenotypes underlying environmental effects on health are poorly understood. In the Human Early Life Exposome (HELIX) project, a multi-centre cohort of 1301 mother-child pairs, we associate individual exposomes consisting of >100 chemical, outdoor, social and lifestyle exposures assessed in pregnancy and childhood, with multi-omics profiles (methylome, transcriptome, proteins and metabolites) in childhood. We identify 1170 associations, 249 in pregnancy and 921 in childhood, which reveal potential biological responses and sources of exposure. Pregnancy exposures, including maternal smoking, cadmium and molybdenum, are predominantly associated with child DNA methylation changes. In contrast, childhood exposures are associated with features across all omics layers, most frequently the serum metabolome, revealing signatures for diet, toxic chemical compounds, essential trace elements, and weather conditions, among others. Our comprehensive and unique resource of all associations (https://helixomics.isglobal.org/) will serve to guide future investigation into the biological imprints of the early life exposome
    • 

    corecore