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Abstract

The DAMIC-M (DArk Matter In CCDs at Modane) experiment employs thick, fully de-

pleted silicon charged-coupled devices (CCDs) to search for dark matter particles with a

target exposure of 1 kg-year. A novel skipper readout implemented in the CCDs provides

single electron resolution through multiple non-destructive measurements of the individ-

ual pixel charge, pushing the detection threshold to the eV-scale. DAMIC-M will advance

by several orders of magnitude the exploration of the dark matter particle hypothesis,

in particular of candidates pertaining to the so-called “hidden sector.” A prototype, the

Low Background Chamber (LBC), with 20g of low background Skipper CCDs, has been

recently installed at Laboratoire Souterrain de Modane and is currently taking data. We

will report the status of the DAMIC-M experiment and first results obtained with LBC

commissioning data.
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1 The DAMIC-M experiment

The DAMIC-M (DArk Matter in CCDs at Modane) experiment [1] will use thick silicon charge-

coupled devices (CCDs) to search for dark matter particles at the Laboratoire Souterrain de

Modane in France (LSM). To be sensitive to nuclear and electronic recoils from scattering

of light dark matter candidates (eV to GeV), the target is to achieve a low background rate

of ∼0.1 dru and a 1 kg-year exposure. Additionally, the CCDs will operate with 2-3 electron

ionization thresholds (∼5 eV) to meet the required sensitivity.

DAMIC-M is currently in the development phase, with anticipated installation in 2023-

2024. The collaboration has accomplished many milestones thus far in preparation for the

production of CCDs, detector design, as well as various CCD measurements. In particular,

we have defined the strategy for producing silicon wafers with low cosmogenic activation

and radon contamination by limiting the time above ground during fabrication, transport,

and storage. We have also developed low background packaging procedures to ensure the

CCD will be surrounded by clean materials. Figure 1 shows a prototype DAMIC-M four-CCD

module packaged at the University of Washington, as well as the design for the 200-CCD
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Figure 1: (a) DAMIC-M module with four CCDs in package at the University of Wash-

ington. (c) Design of CCD array with CCDs (light gray) on silicon pitch adaptor mod-

ule (dark gray) in copper package (orange). (c) Model of one design option for the

DAMIC-M cryostat, illustrating the thermal path, cabling, and CCD array.

array that will be contained in the electro-formed copper cryostat. To protect further from

backgrounds, the array will be shielded by an innermost layer of ancient lead, inside a larger

lead and polyethylene shield.

Several campaigns to characterize the performance, detector response, and background

capabilities have been undertaken in the last few years. Measurements of Compton scattering

on silicon down to 23 eV were presented by R. Smida at IDM2022 and have been accepted by

Phys. Rev. D [2]. With the same experimental set-up at The University of Chicago, we are now

measuring the nuclear recoil ionization efficiency to even lower thresholds. Crucially, single

electron resolution with these large format, thick skipper CCDs has also been demonstrated

in test chambers across multiple institutions. More details will be discussed in Section 2. Due

to the excellent performance of the CCDs, we have recently installed a prototype detector, the

Low Background Chamber (LBC), on-site at LSM. Through this effort, the collaboration has

gained enormous experience in working underground with the laboratory staff, handling low-

background materials, and optimizing the operation parameters of the CCDs. Results from the

first dark matter-electron scattering search with the LBC are presented in Section 3.

In anticipation of detector construction, DAMIC-M continues to make progress on the fab-

rication of low-background parts (including newly developed flex cables in collaboration with

PNNL [3]), development of new CCD controller electronics, and evaluating the performance

of DAMIC-M prototype CCDs.

2 Skipper CCDs for dark matter detection

DAMIC-M will use 200-massive (∼3.5 g), 9 Mpixel skipper CCDs in an array to achieve a kg-

scale target mass. These devices feature a three-phase polysilicon gate structure with a buried

p-channel, a pixel size of 15×15µm2, and a thickness of 670µm. The bulk of the devices

is high-resistivity (10–20 kΩcm) n-type silicon, allowing for full-depletion at substrate biases

≥40 V. The CCDs were developed at Lawrence Berkeley National Laboratory MicroSystems

Lab [4–6] and fabricated by Teledyne DALSA Semiconductor.

As in conventional CCDs, particle interactions in the silicon bulk generate charge carriers

proportional to the energy deposition. A voltage bias applied between the bottom and top

surfaces drifts the charge towards the pixel array in the z-direction. Simultaneously, as the

charge drifts it also spreads with a Gaussian profile in the lateral direction due to thermal

diffusion proportional to the drift length. Thus, the size of pixel clusters in the images allow

for 3D reconstruction of interactions [7]. As the topology of the energy deposit depends on

the particle type, CCDs can efficiently identify particles for background rejection.
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Figure 2: (a) Cartoon of how charge is moved in CCDs for readout. (b) Example

pixel charge distribution demonstrating the single electron resolution capability of

skipper CCDs. Each peak corresponds to the number of electrons detected.
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Figure 3: DAMIC-M sensitivity projections with 1 kg-year exposure for various dark

matter candidates (a) hidden photons (b) heavy mediators (c) light mediators. Other

results from Refs. [11–18] and theory projections from Ref. [19].

Voltage clocks move the charge row-by-row towards the serial register and are then clocked

to either end where a charge-to-voltage amplifier reads out the signal. An illustration of this

process is shown in Figure 2(a). Skipper CCDs have special amplifiers (DAMIC-M will use

47/6µm2 skipper amplifiers) that can make multiple non-destructive charge measurements

(NDCMs) [8–10]. This type of floating gate amplifier allows the charge from one pixel to be

moved back and forth across a measurement node Nskip times before charge destruction. The

measurements can then be averaged, and since they are uncorrelated, the readout noise is

significantly reduced to σNskip
= σ1/
Æ

Nskip, where σ1 is the single-sample readout noise (i.e.

the standard deviation of a single charge measurement). When Nskip is large, we can reach

sub-electron noise thresholds and be sensitive to single ionization signals. Figure 2(b) demon-

strates the ability to measure single electrons (the individual Gaussian populations represent

0e−, 1e−, 2e−peaks) with a resolution of a fraction of an electron. Furthermore, the ability to

identify single electrons provides an inherent energy conversion calibration.

Combining the information gained from the high spatial and energy resolution of skip-

per CCDs, the DAMIC-M detector can achieve a low background rate and detector threshold

with excellent sensitivity to both nuclear and electronic recoils from light, GeV-scale Weakly

Interacting Massive Particles (WIMPs) and sub-GeV dark-sector candidates, respectively. Fig-

ure 3 shows the projected sensitivity of DAMIC-M with a 1 kg-year exposure in searches for

the absorption of hidden photons and dark matter-electron scattering via a heavy and light

mediator.
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(a) (b)

Figure 4: The LBC detector in the cleanroom at LSM with (a) internal lead shield

only and (b) internal lead plus external lead and polyethylene shield. The external

shielding provides a factor of 30 reduction in background rate.

3 First results with the Low Background Chamber

To demonstrate the feasibility of the skipper CCD technology in a low-background environ-

ment, the DAMIC-M collaboration installed the LBC prototype at LSM at the end of 2021. The

detector has reached a background level of O(10 dru)1 and we have validated the design of

various detector components and subsystems. Over the last months, the two 6k×4k large for-

mat skipper CCDs have operated stably inside the copper cryostat, shown in Figure 4(a). The

air-driven cryocooler has maintained the CCDs at a temperature of∼130 K and the pressure in-

side the cryostat is held at∼10−7 mbar by the turbo pump. The CCDs, data acquisition system,

and instrumentation all run remotely and are monitored by the slow control system [20,21].

During this time, no time-varying environmental backgrounds have been observed.

Each of the two CCDs is read out by two amplifiers, producing a total of four images

during each exposure. This allows for faster readout, and along with pixel binning, reduces

the overall readout noise. The CCD operating parameters were optimized for collecting science

data, resulting in an observed average resolution of σNskip
≈0.2e−(<1 eV) at Nskip=650 and

a dark current of ∼3×10−3 e−/pixel/day. The measured dark current is a factor of 10 higher

than anticipated (compared with DAMIC@SNOLAB [12]). We are working to understand if

this is from an unidentified instrumental effect, stresses induced in the silicon, a light leak in

the detector, or otherwise.

Multiple data sets have been acquired for commissioning and science purposes. To verify

the performance of the detector and optimize the CCD parameters, the LBC was operated with

an internal lead shield only, as shown in Figure 4(a). We were able to confirm the calibration

strategy, develop analysis techniques, and reduce dark current with thermal tests during these

runs. A 300 dru background level was achieved in this configuration. For science data the

full shielding was assembled, see Figure 4(b), and the background reduces to ∼10 dru. From

May to July, the LBC provided a 115 g-day exposure, from which we performed our first dark

matter-electron scattering search.

Data analysis was performed by a set of well-vetted event selection steps and cross-checked

across multiple analysis frameworks. First, images are selected by eliminating those that have

a high dark current. Then we group pixel hits together using a clustering reconstruction algo-

rithm, removing clusters with total energy>10e− to distinguish higher energy events. Because

we read out the CCDs with 10×10 binning to collect all the charge from one interaction in one

1Future LBC upgrades will include replacing the standard copper CCD package with electro-formed copper,

which we expect will reduce the background level to a few dru.
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preliminary

Figure 5: Single pixel-charge distribution from one amplifier in one LBC CCD.

pixel, this analysis only requires the identification of single-pixel events. A mask is applied to

remove any multi-pixel clusters with residual charge resulting from charge transfer inefficiency

(CTI). Additionally, cross-talk, or pixels with high charge observed in both amplifiers on the

same CCD, are eliminated. The last step is to exclude defects in the silicon bulk by identifying

“hot” columns that have a charge of >2σDC , where σDC is the standard deviation of the dark

current distrbution across all columns. An example single pixel charge-distribution (PCD) for

one amplifier is shown in Figure 5.

To set the dark-matter electron limit, QEdark [22] is used to generate the differential rate

of the dark matter signal with respect to energy. Halo parameters from Ref. [23] are used,

as suggested by the dark matter community. The detector response is applied to the simu-

lated signal to produce a probability distribution function. The response model includes the

conversion of energy to charge for low energy ionization yields [24] and diffusion parame-

ters measured with the LBC CCDs. The measured PCD in each amplifier is assumed to have a

Poisson background with a Gaussian noise resolution. A global fit and binned joint likelihood

minimization is performed to set the 90% C.L. upper limits in cross section-dark matter mass

parameter space. The limits for the heavy and light mediator candidates are shown Figure 6.

We note here that, as illustrated in Figure 5, that the analysis yields a 4e−event in one

amplifier in this analysis. The probability of such an excess from the skipper readout noise

model is ∼15%. The interpretation of this is currently under investigation with an enhanced

dataset, where we expect to improve the low-mass sensitivity for a world-leading limit.

4 Conclusion

DAMIC-M is a novel experiment using skipper CCDs to achieve low-energy thresholds that

enable the search for light dark matter. The experiment is in the development phase towards

building a kg-scale CCD array housed within an extremely low background environment at

LSM. The LBC has been installed since the end of 2021 and we have taken data to assess

the background strategy and performance of the skipper CCDs. With a preliminary analysis,

DAMIC-M has derived its first dark matter-electron limit with a 115 g-day exposure. Since

the IDM conference, new data have been taken with reduced dark current and an improved,

world-leading limit is forthcoming.
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Figure 6: Preliminary DAMIC-M LBC 90% C.L. exclusions with 115 g-day exposure

for (a) heavy mediator and (b) light mediator dark matter candidates. Other results

from Refs. [11–13,15–18,25,26] and theory projections from Ref. [19].
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