1,012 research outputs found

    Application of DOT-MORSE coupling to the analysis of three-dimensional SNAP shielding problems

    Get PDF
    The use of discrete ordinates and Monte Carlo techniques to solve radiation transport problems is discussed. A general discussion of two possible coupling schemes is given for the two methods. The calculation of the reactor radiation scattered from a docked service and command module is used as an example of coupling discrete ordinates (DOT) and Monte Carlo (MORSE) calculations

    Modelling the ecosystem effects of nitrogen deposition: Model of ecosystem retention and loss of inorganic nitrogen (MERLIN)

    Get PDF
    A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN) considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1) temporal sequences of carbon fluxes and pools- 2) time series of hydrological discharge through the soils, 3) historical and current external sources of inorganic nitrogen; 4) current amounts of nitrogen in the plant and soil organic compartments; 5) constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6) soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1) concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2) total nitrogen contents of the organic and inorganic compartments; 3) C:N ratios of the aggregated plant and soil organic compartments; and 4) rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen dynamics in growing forests receiving nitrogen deposition

    An application of hybrid life cycle assessment as a decision support framework for green supply chains

    Get PDF
    In an effort to achieve sustainable operations, green supply chain management has become an important area for firms to concentrate on due to its inherent involvement with all the processes that provide foundations to successful business. Modelling methodologies of product supply chain environmental assessment are usually guided by the principles of life cycle assessment (LCA). However, a review of the extant literature suggests that LCA techniques suffer from a wide range of limitations that prevent a wider application in real-world contexts; hence, they need to be incorporated within decision support frameworks to aid environmental sustainability strategies. Thus, this paper contributes in understanding and overcoming the dichotomy between LCA model development and the emerging practical implementation to inform carbon emissions mitigation strategies within supply chains. Therefore, the paper provides both theoretical insights and a practical application to inform the process of adopting a decision support framework based on a LCA methodology in a real-world scenario. The supply chain of a product from the steel industry is considered to evaluate its environmental impact and carbon ‘hotspots’. The study helps understanding how operational strategies geared towards environmental sustainability can be informed using knowledge and information generated from supply chain environmental assessments, and for highlighting inherent challenges in this process

    Acid deposition, land-use change and global change: MAGIC 7 model applied to Aber, UK (NITREX project) and Risdalsheia, Norway (RAIN and CLIMEX projects)

    No full text
    International audienceNitrogen processes are now included in a new version of MAGIC (version 7), a process-oriented catchment-scale model for simulating runoff chemistry. Net retention of nitrogen (N) is assumed to be controlled by plant uptake and the carbon/nitrogen (C/N) ratio of soil organic matter, the latter as evidenced by empirical data from forest stands in Europe. The ability of this version of MAGIC 7 to simulate and predict inorganic N concentrations in runoff is evaluated by means of data from whole-ecosystem manipulation experiments at Aber, Wales, UK, (nitrogen addition as part of the NITREX project) and Risdalsheia, Norway (exclusion of acid deposition as part of the RAIN project and climate change as part of the CLIMEX project). MAGIC 7 simulated the changes in N leaching satisfactorily as well as changes in base cations and acid neutralising capacity observed at these two sites. MAGIC 7 offers a potential tool for regional assessments and scenario studies of the combined effects of acid deposition, land-use and climate change

    Global assessment of nitrogen deposition effects on terrestrial plant diversity : a synthesis

    Get PDF
    Atmospheric nitrogen (N) deposition is it recognized threat to plant diversity ill temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems. from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such its direct toxicity of nitrogen gases and aerosols long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem, and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase. in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition. and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America. especially for the more sensitive ecosystem types. including several ecosystems of high conservation importance. The results of this assessment Show that the Vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and Southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe). and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted Studies are required in low background areas, especially in the G200 ecoregions

    Experimental evidence for drought induced alternative stable states of soil moisture

    Get PDF
    Ecosystems may exhibit alternative stable states (ASS) in response to environmental change. Modelling and observational data broadly support the theory of ASS, however evidence from manipulation experiments supporting this theory is limited. Here, we provide long-term manipulation and observation data supporting the existence of drought induced alternative stable soil moisture states (irreversible soil wetting) in upland Atlantic heath, dominated by Calluna vulgaris (L.) Hull. Manipulated repeated moderate summer drought, and intense natural summer drought both lowered resilience resulting in shifts in soil moisture dynamics. The repeated moderate summer drought decreased winter soil moisture retention by ~10%. However, intense summer drought, superimposed on the experiment, that began in 2003 and peaked in 2005 caused an unexpected erosion of resilience and a shift to an ASS; both for the experimental drought manipulation and control plots, impairing the soil from rewetting in winter. Measurements outside plots, with vegetation removal, showed no evidence of moisture shifts. Further independent evidence supports our findings from historical soil moisture monitoring at a long-term upland hydrological observatory. The results herald the need for a new paradigm regarding our understanding of soil structure, hydraulics and climate interaction

    Review of the effectiveness of on-site habitat management to reduce atmospheric nitrogen deposition impacts on terrestrial habitats

    Get PDF
    1. Given the widespread impacts on habitats in the UK it is essential to understand how habitat management measures could mitigate N deposition impacts and promote recovery. This project reviews the effectiveness of ‘on-site’ land management methods to mitigate nitrogen deposition impacts on sensitive habitats; assesses what effect current management practice has on habitat response to nitrogen deposition; considers how measures may be affected by climate change; and recommends realistic and practical management measures for different habitat types which could be used to mitigate nitrogen impacts or speed recovery. 2. The potential for management to mitigate N deposition impacts was considered across the following broad habitats: broadleaved, mixed and yew woodland & (natural) coniferous woodland; neutral grassland; calcareous grassland; acid grassland; dwarf shrub heath; bog; coastal dunes and slacks; other coastal habitats. For all habitats we were able to identify management techniques with some potential to mitigate N deposition impacts. 3. Management techniques may improve habitat suitability (e.g. control dominant species), remove nitrogen from the system, or both. 4. However, all management techniques also have unintended consequences meaning that their implementation might conflict with other conservation priorities. 5. There are a range of schemes and handbooks providing habitat management advice in the UK. The following techniques were reviewed in detail: grazing; cutting; burning; fertilisation; liming; hydrological management; scrub and tree management; disturbance. 6. Current management may already be partially offsetting the impact of N deposition. 7. Management for N is unlikely to make habitats more vulnerable to climate change. There is complementarity in the management options required to tackle N deposition and climate change. The frequency or intensity of measures such as grazing, cutting or burning will all need to increase. Regional variation in climate change may lead to different emphasis of management options in the wetter north west and the drier south east. 8. Climate change will alter habitat sensitivity to N deposition, via changes in ecosystem processes. Overall, climate change will make woodlands less sensitive to N deposition, but will make heathlands more sensitive to N deposition. Effects on other habitats have not yet been evaluated. 9. There is some potential for mitigating the impacts of N deposition through on-site management although this varies greatly between habitat and management practice. It is likely that small changes in management and adherence to appropriate guidelines could partially improve habitat suitability and/or increase N removal. 10. The majority of management practices do not remove significant quantities of N (with the exception of removing biomass or topsoil). Furthermore, management of a suitable intensity to remove sufficient N to fully offset N added by atmospheric deposition is likely to damage the habitat and result in a number of unintended consequences. 11. Further research is needed to determine the impacts of individual management practices on the N budget in different habitats. Further research is also needed to explore the potential for novel management techniques to remove N from sites. 12. For an individual site where N is identified as a pressure, a manager can look at current management and compare this with the management recommendations in the report to make changes where appropriate. 13. All management recommendations that remove N from the site move it elsewhere and have the potential for unintended consequences. Consequently there is no substitute for reducing the amount of N deposited onto a site which can only be achieved through emission controls

    Morphodynamics of a width-variable gravel bed stream: new insights on pool-riffle formation from physical experiments

    Get PDF
    Field observations, experiments, and numerical simulations suggest that pool-riffles along gravel bed mountain streams develop due to downstream variations of channel width. Where channels narrow, pools are observed, and at locations of widening, riffles occur. Based on previous work, we hypothesize that the bed profile is coupled to downstream width variations through momentum fluxes imparted to the channel surface, which scale with downstream changes of flow velocity. We address this hypothesis with flume experiments understood through scaling theory. Our experiments produce pool-riffle like structures across average Shields stresses t* that are a factor 1.5–2 above the threshold mobility condition of the experimental grain size distribution. Local topographic responses are coupled to channel width changes, which drive flows to accelerate or decelerate on average, for narrowing and widening, respectively. We develop theory which explains the topography-width-velocity coupling as a ratio of two reinforcing timescales. The first timescale captures the time necessary to do work to the channel bed. The second timescale characterizes the relative time magnitude of momentum transfer from the flowing fluid to the channel bed surface. Riffle-like structures develop where the work and momentum timescales are relatively large, and pools form where the two timescales are relatively small. We show that this result helps to explain local channel bed slopes along pool-riffles for five data sets representing experimental, numerical, and natural cases, which span 2 orders of magnitude of reach-averaged slope. Additional model testing is warranted.Peer ReviewedPostprint (published version
    corecore