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Many radiation transport problems can best be solved by using both discrete

ordinates and Monte Carlo techniques with a coupling between the two techniques

occurring at a geometry interface. A general discussion of two possible coupling

schemes is given. The calculation of the reactor radiation scattered from a

docked service and command module is used as an example of coupling discrete

ordinates (DOT) and Monte Carlo (MORSE) calculations.

Many SNAP shielding problems involve determin-

ing neutron and gamma-ray transport in three-dimen-

sional geometries. The solution of these problems

by the application of Monte Carlo techniques alone

frequently requires considerable computer time;

however, many parts of the transport problem are

only one- or two-dimensional and can easily be

solved with discrete ordinates techniques. A con-

venient approach to solving the three-dimenslonal

problem is to combine the discrete ordinates and

Monte Carlo techniques, using Monte Carlo only for

the transport that is three dimensional.

In coupling discrete ordinates with Monte Car-

lo, there is generally some difficulty associated

with the compatibility of cross-section representa-

tion. This is due to the use of multlgroup cross

sections in the discrete ordinates codes and point

cross sections in the Monte Carlo calculations.

Additional problems in performing coupled neutron-

gamma-ray calculations in the Monte Carlopart also

arise in some cases. The use of the multlgroup

Monte Carlo code MORSE (ref. 1) alleviates both of

these problems in that the same multlgroup cross

sections can be used in both the discrete ordinates

and the Monte Carlo calculations, and the coupled

neutron-gamma-ray transport can be solved as one

problem.

In using the results of discrete ordinates cal-

culations as a source term for a Monte Carlo calcu-

lation, it is desirable to use as much as possible

of the detail that is available, or else determine

the effect of ignoring the detail. In other words,

the assumption of separation of energy, angular,

and spatial variation of the radiation should be

avoided.
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In general, the source term for the Monte Carle

calculation may be distributed over a volume or may

Be a boundary or surface source. Both types of

coupling will be discussed, and then an example will

be given to illustrate a specific application.

The first case to be discussed is the coupling

of results of discrete ordinates calculations [in

this case, DOT (ref. 2) results] to Monte Carlo

with a volume or region being unique to both calcu-

lations. The results of a DOT calculation of the

fluence _(r,z,E,8,_), a flve-dimensional array de_

fined for r,z within the volume of interest, is

assumed to exist. In general, one would like to

select the source term for subsequent calculations

from a conditional probabilitiy distribution for

particles leaving a collision as a function of each

of the five variables. Because of the large array

of numbers, approximations have been made in the

past in which some of the variables are selected

from non-condltional probabilities that are volume

integrated. For example, the energy may be sel-

ected from the spectrum integrated over the volume.

Likewise, the angular distribution may be assumed

to be the same for all points in the volume, or for

all energies. However, complete detail can be used

with increased data handling and storage require-

ments.

The first step in coupling over a spatial reg-

ion is to convert the fluence % to X, the density

of particles leaving a collision. This is accom-

plished by multiplying the fluence by the group-re-

group cross section:

x(r,z,Eg,8,_)- I I _(r,z,E',8',%)
8' E'

x Es(E'+Eg,8'-_ )

Then, define

676

https://ntrs.nasa.gov/search.jsp?R=19720010041 2020-03-17T03:44:33+00:00Z



T = I 2_ar I az [ X [ wt(_,m)x(r,Z,Eg,e,¢)
v v g _m

r g

where x(r,z,Eg,0,_)2_ArAz is defined as the densi-

ty of particles leaving a collision at r,z with

energy E in group g per unit polar angle 6 and azi-

muthal angle _.

wt(£) = _ wt(£,m) is the solid angle segment

m

for each polar angle 8, and

wt(_,m) = the solid angle of each azimuthal angle

for each polar angle index 4.

In order to select from this distribution, one

must form the five following distributions:

R(r) = 2zrA-------!r[ Az [ [ [ wt(£,m)
T

v g£m
Z

z(z]r)---

x x(r,z,Eg,O,$) ,

2_Az_Ar

TR(r) [ [ I wt(£,m)x(Z,mg,O,_)r) ,
g £ m

E(Eiz,r) = Az2_rAr
rZ(zl_')R(r } I_ _ wt(£,m)

x X(Eg,e,_lz,r ) ,

az2_r&r

P(01Eg,Z,r) = TE(Eg]z,'r)Z(zlr)R(r) [ wt(t,m)
m

× X_,_]Eg,z,r) ,

wt(_,m)_z2_rAr x($1e,E,z,r)

A(¢I_,Eg z,r) =
' TP(O ]Eg,z,r)E(Egl z,r)Z (ZIr)R(r) •

From these conditional probability distributions

one may select values for the source coordinates.

With the assumption of linear variation between

spatial points and angular directions the discrete

values are not carried forth in the Monte Carlo

calculation, but instead a continuous distribution

of coordinates is selected. Care must be exercised

in utilizing this type of coupling so that the

transport in the overlap region is not included

twice. This may be accomplished using a pure ab-

sorber in the overlap region in the Monte Carlo cal-

culation.

Perhaps a more useful coupling technique is

the coupling at a boundary of the system. For this

case, similar conditional probabilities must also

be formed, with some minor exceptions. Consider

the coupling surface to be the outer boundary of a

cylinder.

The leakage fluence, ¢(r,Z,Eg,6,_), at the top,

bottom, and curved surface of a cylinder is deter-

mined as a function of energy, polar, and azimuthal

angles, as well as the spatial variation on the sur-

faces. The leakage fluence on these surfaces desig-

nated as Ro_ ZT, and ZB.must be converted to current

for the selection of the source term of the Monte

Carlo calculation. Thus, there are three spatial

terms - the radial variation at the top, the radial

variation at the bottom, and the height variation

at the outer surface of the cylinder. Define T, B,

and S for the integrated leakage for the top, bottom,

and side of the cylinder.

[ 2_Ar [ [ cos(Og)[ wt(t,m)

O,R ° Eg cos0>0 m

r _

x ¢(r,ZT,Eg,O,¢ ) ,

O,R ° Eg cos6<0

_ wt(g,m)¢(r,ZB,Eg,O,qb) ,
m

S = 2_R _ Az _ [ sin(6£)

o ZB,Z T Eg £ cos_>O

x wt(£,m)cos¢ ¢(Ro,Z,Eg,O,¢) ,

with total leakage TL = T + B + S.

For each of the above terms, a four-dimensional

conditional probability must be determined. For

example, consider the bottom surface leakage:

_(r) 2_Ar= --f-[ [ Icos(o)ll
E cos6<0 m
g

× wt(£,m)¢(r,ZB,Eg,e, _) ,

EB(Eglr ) = 2_a_.__.._rBR(r) [ ]cos(e)ll _t(_,m)
cos0<O m

x ¢(r,ZB,Eg,O,¢ ) ,
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2E_Arlcos(O)I
PB(01Eg,r)= BR(r)EBCEglr) _ wt(£,m)

x ¢(r,ZB,Eg,e, _) ,

AB(_IO,Eg,r ) = 2_ArlcosOlwt(£,m)
BR(r)EB_Eglr)PB(OlEg,r)

x ¢(r,ZB,Eg,O, _) •

The results for the top surface leakage and side

leakage are similar.

With probability B/TL and T/TL the source

would be selected from the bottom and top surface,

respectively, and with probability S/TL the source

would be selected from the side of the cylinder.

Then, given the spatial coordinates, an energy

group is chosen from %, and then the direction

cosines are chosen for PB and A B.

The selection from the probability distribution

given above is sometimes hindered by negative fluxes

in the DOT-calculated source term. If there are no

negative values, then the selection of a value x is

selected from the distribution by choosing a ran-

dom number R and finding J such that

k=O k=O

then

[R - P(Xj_l)]

x P(xj)-P(xj 1) (xj -xj_I) +xj_ 1

However, if some values of the distribution

P(xj) are negative, then an alternate scheme is

required. The random number is scaled by the sum

of the absolute values of the probabilities and a

selection is made. A weight correction is required

which can result in negative particle weights.

These negative weights in general will not severely

affect the solution, but they do, of course, affect

the variance of the result.

J  l,(xk)1<R,SuM<_ i <xk>l
k=0 k-0

where

SUM =

Nk

[IP (Xk) I
k=0

and

wate = wate* _*SUM .

If there is a large probability of selecting a neg-

ative weight, then the DOT source term should be

recalculated.

To illustrate DOT-MORSE coupling, we have con-

sidered a problem in which the coupling is at a

boundary surface. More specifically, the problem

consists of calculating the radiation scattered

from a docked command and service module due to the

leakage radiation from a 600-kWt ZrH reactor (with

its associated shielding). The problem is illus-

trated in figure i. The problem which consists of

determining the scattered neutron and gamma-ray

dose at a detector plane due to neutrons and gamma

rays leaking from the reactor power assembly has

previously been investigated at Atomics Internation-

al (refs. 3 and 4). A drawing of the reactor and

shield assembly is shown in figure 2.

i i
i l

J

ORN L-Ow6 _q-_639

REAcToR AND

SHIELD ASSEMBLY

MODUL_

DOSE PLANE

FIGURE l.-Schematic of Reactor Power System and

Docked Service and Command Module.
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FIGURE2.-ReactorShieldAssembly.

Thereareseveralapproachesthat couldbeused
in determiningthedosedueto radiationscattering
fromthedockedmodule.Forexample,one may use

the boundary leakage flux obtained in a discrete

ordinates calculation of the reactor and shield

assembly as a source term for the Monte Carlo calcu-

lation, transport the radiation to the module,

follow the transport in the service module, and

estimate the dose at the detector plane. A second

approach is to perform an adJoint calculation of the

importance of radiation leaking from the core-shield

assembly by Monte Carlo and then integrate the impor-

tance function over the source of particles leaking

from the reactor assembly which was obtained in a

discrete ordinates calculation. Another approach

is to determine the spatial and energy distribution

of the fluence at a surface surrounding the module

and use this surface as the boundary for coupling

the discrete ordinates results to a Monte Carlo cal-

culation of the scattering in the service module.

This last approach will be discussed.

A two-dimensional calculation of the reactor

and shield assembly, as shown in figure 2, was made

with the DOT (ref. 2) code. An S8 quadrature was

used to determine the energy spectra in 21 neutron

and 18 gamm-ray groups. The radiation field at 15

radial locations along a plane at the top of the

service module was obtained with SPACETRAN (ref. 2)

using the leakage boundary fluence. SPACETRAN per-

forms a ray-tracing calculation from each spatial

mesh point to the detector point. The intensity

and energy distribution of both neutrons and gamma

rays was determined for each of these 15 locations.

See Table I for energy group structure and fluence-

to-dose conversion factors. The angular distribu-

tion of the source was determined by assuming that

all the radiation was coming from the center of the

reactor core located approximately 90 feet away.

(The problem is not expected to be very sensitive

to the small angular variation of the radiation

incident on the module.) This radiation field as

a function of space and energy was used as the source

term for Monte Carlo.

Table I. Energy Group Structure and

Fluence-To-Uose Conversion Factors

Fluence-to-Dose

Conversion Factors

Upper (mrem/hr)/

Group Ener 8y (eV) (par t/cm2/see)

Neutrons:

1 1.4918(+7)* 1.5000(-1)

2 1.0000(+7) 1.5000(-1)

6.7032(+6) 1.3700(-i)
4.4933(+6) 1.3200(-1)

5 3.0119(+6) 1.3100(-1)

6 2,0190(+6) 1.2500(-1)

7 1.3534(+6) 1.1600(-1)

8 9.0718(+5) 1.0600(-1)

9 5.5023(+5) 7.5700(-2)

I0 3.3373(+5) 5.5100(-2)

Ii 2.0242(+5) 4.0100(-2)

12 1.2277(+5) 2.4500(-2)

13 4.0867(+4) 8.5000(-3)

14 1.1709(+4) 5.0000(-3)

15 3.3546(+3) 5.0000(-3)

16 7.6852(+2) 5.0000(-3)

17 1.6702(+2) 5.0000(-3)

18 3.7266(+1) 5.0000(-3)

19 8.3153(0) 5.0000(-3)

20 1.8554(0) 5.0000(-3)

21 4.1399(-1) 3.7500(-3)

Gamma Rays:

22 1.0000(+7) 9.8000(-3)

23 8.0000(+6) 8.5000(-3)

24 7.0000(+6) 7.6000(-3)

25 6.0000(+6) 6.7000(-3)

26 5.0000(+6) 5.8000(-3)

27 4.0000(+6) 5.0000(-3)

28 3.5000(+6) 4.5000(-3)

29 3.0000(+6) 4.0000(-3)

30 2.5000(+6) 3.5000(-3)

31 2.0000(+6) 3.0000(-3)

32 1.6000(+6) 2.4000(-3)

33 1.2000(+6) 2.0000(-3)

34 9.0000(+5) 1.5000(-3)

35 6.0000(+5) 1.0500(-3)

36 4.0000(+5) 6.0000(-4)

37 2.1000(+5) 2.8000(-4)

38 1.2000(+5) 1.4000(-4)

39 7.0000(+4) 4.0000(-4)

*Read as 1.4918 x 10 7.

At a plane just above the module, the intensity

variation was determined to be that shown in figure

3. The energy distribution, or the number in each

of the 21 neutron groups and 18 gamma-ray groups,

is shown as a cumulative distribution for three

different radii in figure 4. These curves illus-

trate the distributions used for the selection of

the source in the MORSE Monte Carlo calculation.

By using MORSE, it was possible to determine

the contribution to the scattered dose of the

incident neutrons and gamma rays as well as the

secondary gamma rays produced in the module.
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FIGURE 3.-Spatial Distribution of Radiation at

Source Plane Adjacent to the Service and Command

Module•
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FIGURE 4.-Cumulatlve Probability for Energy

Distribution of Neutrons and Gamma Rays at

Three Locations Along Source Plane.

The geometry employed in the calculation is

illustrated in figure 5, which shows boundary cross-

ing events in the transport of neutrons in the mod-

ule. The radial and longitudinal location of the

crossing events is shown. This collision density

pl0t is an output from MORSE and gives the boundary

crossings for approximately i000 source particles•

The typed numbers give the density of the homogen-

ized parts of the service module, and Table II

gives the material composition for each region•

Figure 6 shows the density of collisions of neutrons

in one particular problem• The rotational symmetry

of the module is taken into account in the plot,

and there are few collisions in the center. The use

of this type of on-line plot has been useful in

determining where the events are occurring and the

effects of importance sampling.

'% !

............................ .7 ....... _..... ,', " ............. " ..... '

FIGURE 5.-Boundary Crossing Events From a MORSE

Calculation. The density of the three material

regions is given•

Table II. Material Composition for the

Service and Command Module

_edium

i

2

3

Weight

(ibs)

13,500

20,800

200

Density

(_Icc)

0.612

0.193

1.36

Composition (wt %)

H o l li TiI
3.3 46.7 20•0 17.0

3.3 I 46•7 20.0 17.0
F

t

Fe

13.0

13.0

I00.0
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FIGURE 6.-Collislon Density Piot for Neutrons

Scattering in the Service and Command Module.

Numbers 1-9 include the number of collisions in

the intervals with 0 indicating i0 or more

collisions.

The contribution of scattered neutrons and

gala rays to the dose at the detector plane (117

ft from the reactor) is shown in Table III (about

5% of the gamma-ray dose is due to secondary gamma

rays produced in the service module). The total

scattered dose of 0.34 mrem/hr should be compared

to the direct dose of 0.70 mrem/hr (0.66 mrem/hr

gamma rays and 0.04 mrem/hr neutrons). These results

are compared with values calculated at Atomics

International for various locations on the detector

plane. There is surprisingly good agreement be-

tween the Monte Carlo and single-scattering results.

Table III. Scattered Dose at the Detector Pla=e

(mrem/hr)

Neutron Dose Gamma-Ray Dose Total
Detector

Location (ft)

Along

_is _Axio

0 0

11 0

0 ll

*With self-absorl

Single Monte

Scattering *I Carlo

0,228 0.29

0.73 0.31

0.27 0.39

tion.

S_ngle Monte

Scat_erin 8 Carlo

0.063 0.05

0.27 0.08

0.09 0.04

Single

Scattering

0.30

1.0

0.36

Monte

Carlo

0.34

0.39

0.43
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As a check on the adequacy of the SPACETRAN cal-

culated spatial distribution at the service module

location, a DOT calculation with a 100-angle quad-

rature biased in the downward direction was made.

Figures 7 and 8 show the spatial distribution at

the source plane and the energy distributions.

There are fairly large differences in these results

compared to those in figures 3 and 4 ; however, the

scattered dose contribution does not change more

than 15%.
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FIGURE 7.-Spatial Distribution of Radiation at

Source Plane Adjacent to the Service and

Command Module Calculated With a 100-angle

Asymmetric Quadrature.
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FIGURE 8.-Cumulative Probability for Energy

Distribution of Neutrons and Gamma Rays at

Three Locations Along Source Plane Calculated

With a 100-angle Asymmetric Quadrature.
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