158 research outputs found
Infiltration Measurements for Soil Hydraulic Characterization
This book summarises the main results of many contributions from researchers worldwide who have used the water infiltration process to characterize soil in the field. Determining soil hydrodynamic properties is essential to interpret and simulate the hydrological processes of economic and environmental interest. This book can be used as a guide to soil hydraulic characterization and in addition it gives a complete description of the treated techniques, including an outline of the most significant research results, with the main points that still needing development and improvement
Analysis of antenal sensilla patterns of Rhodnius prolixus from Colombia and Venezuela
Antennal sensilla patterns were used to analyze population variation of domestic Rhodnius prolixus from six departments and states representing three biogeographical regions of Colombia and Venezuela. Discriminant analysis of the patterns of mechanoreceptors and of three types of chemoreceptors on the pedicel and flagellar segments showed clear differentiation between R. prolixus populations east and west of the Andean Cordillera. The distribution of thick and thin-walled trichoids on the second flagellar segment also showed correlation with latitude, but this was not seen in the patterns of other sensilla. The results of the sensilla patterns appear to be reflecting biogeographic features or population isolation rather than characters associated with different habitats and lend support to the idea that domestic R. prolixus originated in the eastern region of the Andes.Fil: Esteban, Lyda. Universidad Industrial de Santander; ColombiaFil: Angulo, Víctor Manuel. Universidad Industrial de Santander; ColombiaFil: Dora Feliciangeli, M.. Universidad de Carabobo; VenezuelaFil: Catala, Silvia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Secretaría de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; Argentin
An open-source instrumentation package for intensive soil hydraulic characterization
We present a new open-source and modular instrumentation package composed of up to ten automatic infiltrometers connected to data acquisition systems for automatic recording of multiple infiltration experiments. The infiltrometers are equipped with differential transducers to monitor water level changes in a Mariotte reservoir, and, in turn, to quantify water infiltration rates. The data acquisition systems consist of low-cost components and operate on the open-source microcontroller platform Arduino. The devices were tested both in the laboratory and on different urban and agricultural soils in France and India. More specifically, we tested three procedures to treat the transducers readings, including a filtering algorithm that substantially improved the ability to determine cumulative infiltration from raw data. We combined these three procedures with four methods for estimating the soil parameters from infiltrometer data, showing pros and cons of each scenario. We also demonstrated advantages in using the automatic infiltrometers when infiltration measurements were hindered by: i) linearity in cumulative infiltration curves owing to gravity-driven flow, ii) an imprecise description of the transient state of infiltration, and iii) the occurrence of soil water repellency. The use of the automatic infiltrometers allows the user to obtain more accurate estimates of soil hydraulic parameters, while also reducing the amount of effort needed to run multiple experiments
BEST-WR: An adapted algorithm for the hydraulic characterization of hydrophilic and water-repellent soils
Water-repellent soils usually experience water flow impedance during the early stage of a wetting process followed by progressive increase of infiltration rate. Current infiltration models are not formulated to describe this peculiar process. Similarly, simplified methods of soil hydraulic characterization (e.g., BEST) are not equipped to handle water-repellent soils. Here, we present an adaptation of the BEST method, named BEST-WR, for the hydraulic characterization of soils at any stage of water-repellency. We modified the Haverkamp explicit transient infiltration model, included in BEST for modeling infiltration data, by embedding a scaling factor describing the rate of attenuation of infiltration rate due to water repellency. The new model was validated using analytically generated data, involving soils with different texture and a dataset that included data from 60 single-ring infiltration tests. The scaling factor was used as a new index to assess soil water repellency in a Mediterranean wooded grassland, where the scattered evergreen oak trees induced more noticeable water repellency under the canopies as compared to the open spaces. The new index produced results in line with those obtained using the water drop penetration time test, which is one of the most widely test applied for quantifying soil water repellency persistence. Finally, we used BEST-WR to determine the hydraulic characteristic curves under both hydrophilic and hydrophobic conditions
Detecting infiltrated water and preferential flow pathways through time-lapse ground-penetrating radar surveys
The objective of this paper was to identify the incidence and extent of preferential flow at two experimental areas located in Lyon, France. We used time-lapse ground-penetrating radar (GPR) surveys in conjunction with automatized single-ring infiltration experiments to create three-dimensional (3D) representations of infiltrated water. In total we established three 100 cm × 100 cm GPR grids and used differenced radargrams from pre- and post-infiltration surveys to detect wetting patterns. The analyzed time-lapse GPR surveys revealed the linkage between nonuniform flow and heterogeneous soil structures and plant roots. At the first experimental area, subsurface coarse gravels acted as capillary barriers that concentrated flow into narrow pathways via funneled flow. At the second experimental area, the interpolated 3D patterns closely matched direct observation of dyed patterns, thereby validating the applied protocol. They also highlighted the important role of plant roots in facilitating preferential water movement through the subsurface. The protocol presented in this study represents a valuable tool for improving the hydraulic characterization of highly heterogeneous soils, while also alleviating some of the excessive experimental efforts currently needed to detect preferential flow pathways in the field
Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration
In Mediterranean ecosystems, special attention needs to be paid to forest-water relationships due to water scarcity. In this context, Adaptive Forest Management (AFM) has the objective to establish how forest resources have to be managed with regards to the efficient use of water, which needs maintaining healthy soil properties even after disturbance. The main objective of this investigation was to understand the effect of one of the AFM methods, namely forest thinning, on soil hydraulic properties. At this aim, soil hydraulic characterization was performed on two contiguous Mediterranean oak forest plots, one of them thinned to reduce the forest density from 861 to 414 tree per ha. Three years after the intervention, thinning had not affected soil water permeability of the studied plots. Both ponding and tension infiltration runs yielded not significantly different saturated, Ks, and unsaturated, K-20, hydraulic conductivity values at the thinned and control plots. Therefore, thinning had no an adverse effect on vertical water fluxes at the soil surface. Mean Ks values estimated with the ponded ring infiltrometer were two orders of magnitude higher than K-20 values estimated with the minidisk infiltrometer, revealing probably soil structure with macropores and fractures . The input of hydrophobic organic matter, as a consequence of the addition of plant residues after the thinning treatment, resulted in slight differences in terms of both water drop penetration time, WDPT, and the index of water repellency, R, between thinned and control plots. Soil water repellency only affected unsaturated soil hydraulic conductivity measurements. Moreover, K-20 values showed a negative correlation with both WDPT and R, whereas Ks values did not, revealing that the soil hydrophobic behavior has no impact on saturated hydraulic conductivity
Mixed formulation for an easy and robust numerical computation of sorptivity
Sorptivity is one of the most important parameters for the quantification of water infiltration into soils. proposed a specific formulation to derive sorptivity as a function of the soil water retention and hydraulic conductivity functions, as well as initial and final soil water contents. However, this formulation requires the integration of a function involving hydraulic diffusivity, which may be undefined or present numerical difficulties that cause numerical misestimations. In this study, we propose a mixed formulation that scales sorptivity and splits the integrals into two parts: the first term involves the scaled degree of saturation, while the second involves the scaled water pressure head. The new mixed formulation is shown to be robust and well-suited to any type of hydraulic function - even with infinite hydraulic diffusivity or positive air-entry water pressure heads - and any boundary condition, including infinite initial water pressure head, h→-∞. Lastly, we show the benefits of using the proposed formulation for modeling water into soil with analytical models that use sorptivity. Copyright
A scaling procedure for straightforward computation of sorptivity
Sorptivity is a parameter of primary importance in the study of unsaturated flow in soils. This hydraulic parameter is required to model water infiltration into vertical soil profiles. Sorptivity can be directly estimated from the soil hydraulic functions (water retention and hydraulic conductivity curves), using the integral formulation of . However, calculating sorptivity in this manner requires the prior determination of the soil hydraulic diffusivity and its numerical integration between initial and final saturation degrees, which may be difficult in some situations (e.g., coarse soil with diffusivity functions that are quasi-infinite close to saturation). In this paper, we present a procedure to compute sorptivity using a scaling parameter, cp, that corresponds to the sorptivity of a unit soil (i.e., unit values for all parameters and zero residual water content) that is utterly dry at the initial state and saturated at the final state. The cp parameter was computed numerically and analytically for five hydraulic models: Delta (i.e., Green and Ampt), Brooks and Corey, van Genuchten-Mualem, van Genuchten-Burdine, and Kosugi. Based on the results, we proposed brand new analytical expressions for some of the models and validated previous formulations for the other models. We also tabulated the output values so that they can easily be used to determine the actual sorptivity value for any case. At the same time, our numerical results showed that the relation between cp and the hydraulic shape parameters strongly depends on the chosen model. These results highlight the need for careful selection of the proper model for the description of the water retention and hydraulic conductivity functions when estimating sorptivity
A scaling procedure for straightforward computation of sorptivity
This research has been supported by the Agence Nationale de la Recherche (grant no. ANR-17-CE04-010).Sorptivity is a parameter of primary importance in
the study of unsaturated flow in soils. This hydraulic parameter
is required to model water infiltration into vertical soil
profiles. Sorptivity can be directly estimated from the soil hydraulic
functions (water retention and hydraulic conductivity
curves), using the integral formulation of Parlange (1975).
However, calculating sorptivity in this manner requires the
prior determination of the soil hydraulic diffusivity and its
numerical integration between initial and final saturation degrees,
which may be difficult in some situations (e.g., coarse
soil with diffusivity functions that are quasi-infinite close to
saturation). In this paper, we present a procedure to compute
sorptivity using a scaling parameter, cp, that corresponds to
the sorptivity of a unit soil (i.e., unit values for all parameters
and zero residual water content) that is utterly dry at the
initial state and saturated at the final state. The cp parameter
was computed numerically and analytically for five hydraulic
models: delta (i.e., Green and Ampt), Brooks and Corey, van
Genuchten–Mualem, van Genuchten–Burdine, and Kosugi.
Based on the results, we proposed brand new analytical expressions
for some of the models and validated previous formulations
for the other models. We also tabulated the output
values so that they can easily be used to determine the actual
sorptivity value for any case. At the same time, our numerical
results showed that the relation between cp and the
hydraulic shape parameters strongly depends on the chosen
model. These results highlight the need for careful selection
of the proper model for the description of the water retention
and hydraulic conductivity functions when estimating sorptivity.French National Research Agency (ANR)
European Commission ANR-17-CE04-01
Influence of Carbonation on the Microstructure and Hydraulic Properties of a Basic Oxygen Furnace Slag
Basic oxygen furnace (BOF) slag is considered as a potential alternative construction material and is used here on an experimental plot to accurately quantify the risk of pollutant release. Since pollutant release depends on flow, this initially requires characterizing BOF slag hydraulic properties. These were monitored and estimated at plot scale by carrying out water infiltration experiments and inverse numerical modeling. Monitoring the plot showed that the BOF slag studied crusted at the surface as a result of weathering processes. Numerical inversion proved that the crusted material differed from the unaltered slag in terms of water retention and hydraulic conductivity functions. Although all the data pointed to a decrease in saturated hydraulic conductivity with crusting, the trends depended on the infiltration devices used for the capillary length (tension disc vs. Beerkan). Scanning electron microscope (SEM) microanalysis of laboratory weathering cells and lysimeter measurements were monitored in parallel to study the microstructure more precisely and highlighted a reduction of porosity by clogging. On the basis of SEM observations, two conceptual models of pore reduction, based on two different pore clogging hypotheses, were applied to predict hydraulic properties. This step demonstrated that the effect on water retention and hydraulic conductivity strongly depended on the way precipitated phases form and coat grains and could explain the evolution of the transport properties observed. This study contributes to knowledge on the hydraulic properties of BOF slag and their evolution due to carbonatio
- …
