111 research outputs found

    Banse, K. and S.A. Piontkovsky (eds.). The mesoscale structure of the epipelagic ecosystem of the open Northern Arabian Sea

    Get PDF
    Book review: BANSE, K. and S.A. PIONTKOVSKY (eds.). – 2006. The mesoscale structure of the epipelagic ecosystem of the open Northern Arabian Sea. Universities Press, Hyderabad, India. 237 pp. ISBN 81 7371 496 7This book presents an extensive body of information obtained mainly from the thirtieth cruise of the R/V Professor Bodyanitsky to the Arabian Sea, carried out in 1990. It is part of a series published by the Universities Press, India, with the support of the Indian Academy of Sciences in Bangalore, whose aim is to narrow the English-Russian language gap concerning scientific literature on low-latitude oceansPeer reviewe

    Multi-scale Modelling of Adapting European Farming Systems

    Get PDF
    European farming systems are challenged by an increasing global population, income growth, dietary changes and last, but not least, by a changing climate threatening future harvests, especially through increased frequency and severity of extreme events such as drought and heat waves. Therefore, there is a clear need to sustainably intensify and effectively adapt agricultural systems to climate change. Yet, increase in food production and adaptation are just two of many claims on agriculture, which is also supposed to meet growing demands on feed, fibre and fuel and to play a key role in mitigating climate change. The multiple claims on ecosystem services expected from agri-ecological systems call for an integrated assessment and modelling (IAM) of agricultural systems to adequately evaluate the multiple dimensions of the potential impacts as well as promising adaptation and mitigation options. This includes agriculture's responses to global change in the context of other sustainability aspects. Biophysical and socioeconomic analyses need to be integrated across different disciplines and spatiotemporal scales. In recent years the agricultural systems modelling community has made great efforts to use harmonized climate change, socio-economic and agricultural development scenarios and run them through a chain of models, e.g. by selected ensembles of biophysical and economic models at multiple scales, from farm to global. In phase 2 (2015-17) the European MACSUR knowledge hub has put its main focus on the regional (sub-national) level in the EU, with due consideration of the whole farm context. The aim of this paper is to compare three regional cases from the pool of MACSUR case studies across Europe, i.e. North Savo region in Finland, the Mostviertel region in Austria and the Oristanese region in Sardinia (Italy) representing different European farming systems along a north-south climatic gradient in Europe. These case studies represent a sample of some prominent farming systems, though only a fraction of a much larger diversity of farming and environmental conditions prevailing in Europe. We describe how adaptation options are analysed within an integrated set of linked models or model outputs combining information from different spatial scales, i.e. from region-specific crop, animal and farm level models to an analysis at regional and national level changes in agriculture and food production. First results show that adaptation to climate change affects agricultural production and farm income very differently. For some regions, e.g. in Finland there are both negative and positive effects while for the Sardinian case study adaptation to climate change have negative effects on farm income. Biophysical models, especially crop simulation models are first applied to analyse climate change impacts on yield, water use, biomass etc. and provide the outputs (i.e. delta changes) as input to economic models that contain the regional specificities of the case studies. Likewise, biophysical models are applied to analyse effects of various adaptation and mitigation options to provide information on effects of management changes on reducing damage/loss or taking opportunities from climate (adaptation) or reducing greenhouse gas emissions (mitigation). The economic models analyse economic impacts, for example the viability of management changes at farm and regional scales. Farm and regional scale economic models, backed by more detailed data and regional expert knowledge, can supply better representations of developments in each of the regions than this could be done by larger-scale (e.g. EU-wide or global) models. Sector or national economy-wide models are less specific in technical changes in agriculture, productivity changes, or in its use of inputs, due to higher level of aggregation. Nevertheless the market level view offered by sector models put the farm level changes and adaptations in a wider global context. Agricultural markets are highly integrated globally and the analyses for the case study regions also require information on global and European market developments. For example, significant changes in food demand due to changes in tastes and preferences, including aspects of climate change mitigation, may imply major changes for regional production structures. In MACSUR, this information – although not fully implemented in the case studies yet – is provided by the economic agricultural sector model CAPRI. The main strength of CAPRI in this context is that it is a global model with European focus. As such CAPRI can capture global developments and translate them to the regional level in the EU. The coupled analysis using global, EU and national level models side by side with farm level models provides unique results and much more insights on future possibilities and challenges for farmers and the food chain, than separating and restricting the analyses to either low or high aggregation level analyses. Market and policy changes often dominate longer term climate change considerations in the decision making of food chain actors, even if unfavourable weather events have become more common in recent years. Socio-economic scenarios from global to national and regional levels are needed to put adaptation and mitigation strategies in a wider context. Models, especially those that are able to accommodate biophysical, economic and policy changes are needed to show the value added from adaptations to climate change. Benefits and costs of mitigation strategies may be highly dependent on market developments. The current integrated assessment and modelling approach of MACSUR focusses on adaptation scenarios. It will be extended for the analysis and impact of mitigation policies in a later phase

    Multi-scale Modelling of Adapting European Farming Systems

    Get PDF
    European farming systems are challenged by an increasing global population, income growth, dietary changes and last, but not least, by a changing climate threatening future harvests, especially through increased frequency and severity of extreme events such as drought and heat waves. Therefore, there is a clear need to sustainably intensify and effectively adapt agricultural systems to climate change. Yet, increase in food production and adaptation are just two of many claims on agriculture, which is also supposed to meet growing demands on feed, fibre and fuel and to play a key role in mitigating climate change. The multiple claims on ecosystem services expected from agri-ecological systems call for an integrated assessment and modelling (IAM) of agricultural systems to adequately evaluate the multiple dimensions of the potential impacts as well as promising adaptation and mitigation options. This includes agriculture's responses to global change in the context of other sustainability aspects. Biophysical and socioeconomic analyses need to be integrated across different disciplines and spatiotemporal scales. In recent years the agricultural systems modelling community has made great efforts to use harmonized climate change, socio-economic and agricultural development scenarios and run them through a chain of models, e.g. by selected ensembles of biophysical and economic models at multiple scales, from farm to global. In phase 2 (2015-17) the European MACSUR knowledge hub has put its main focus on the regional (sub-national) level in the EU, with due consideration of the whole farm context. The aim of this paper is to compare three regional cases from the pool of MACSUR case studies across Europe, i.e. North Savo region in Finland, the Mostviertel region in Austria and the Oristanese region in Sardinia (Italy) representing different European farming systems along a north-south climatic gradient in Europe. These case studies represent a sample of some prominent farming systems, though only a fraction of a much larger diversity of farming and environmental conditions prevailing in Europe. We describe how adaptation options are analysed within an integrated set of linked models or model outputs combining information from different spatial scales, i.e. from region-specific crop, animal and farm level models to an analysis at regional and national level changes in agriculture and food production. First results show that adaptation to climate change affects agricultural production and farm income very differently. For some regions, e.g. in Finland there are both negative and positive effects while for the Sardinian case study adaptation to climate change have negative effects on farm income. Biophysical models, especially crop simulation models are first applied to analyse climate change impacts on yield, water use, biomass etc. and provide the outputs (i.e. delta changes) as input to economic models that contain the regional specificities of the case studies. Likewise, biophysical models are applied to analyse effects of various adaptation and mitigation options to provide information on effects of management changes on reducing damage/loss or taking opportunities from climate (adaptation) or reducing greenhouse gas emissions (mitigation). The economic models analyse economic impacts, for example the viability of management changes at farm and regional scales. Farm and regional scale economic models, backed by more detailed data and regional expert knowledge, can supply better representations of developments in each of the regions than this could be done by larger-scale (e.g. EU-wide or global) models. Sector or national economy-wide models are less specific in technical changes in agriculture, productivity changes, or in its use of inputs, due to higher level of aggregation. Nevertheless the market level view offered by sector models put the farm level changes and adaptations in a wider global context. Agricultural markets are highly integrated globally and the analyses for the case study regions also require information on global and European market developments. For example, significant changes in food demand due to changes in tastes and preferences, including aspects of climate change mitigation, may imply major changes for regional production structures. In MACSUR, this information – although not fully implemented in the case studies yet – is provided by the economic agricultural sector model CAPRI. The main strength of CAPRI in this context is that it is a global model with European focus. As such CAPRI can capture global developments and translate them to the regional level in the EU. The coupled analysis using global, EU and national level models side by side with farm level models provides unique results and much more insights on future possibilities and challenges for farmers and the food chain, than separating and restricting the analyses to either low or high aggregation level analyses. Market and policy changes often dominate longer term climate change considerations in the decision making of food chain actors, even if unfavourable weather events have become more common in recent years. Socio-economic scenarios from global to national and regional levels are needed to put adaptation and mitigation strategies in a wider context. Models, especially those that are able to accommodate biophysical, economic and policy changes are needed to show the value added from adaptations to climate change. Benefits and costs of mitigation strategies may be highly dependent on market developments. The current integrated assessment and modelling approach of MACSUR focusses on adaptation scenarios. It will be extended for the analysis and impact of mitigation policies in a later phase

    Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models

    Get PDF
    Robust projections of climate impact on crop growth and productivity by crop models are key to designing effective adaptations to cope with future climate risk. However, current crop models diverge strongly in their climate impact projections. Previous studies tried to compare or improve crop models regarding the impact of one single climate variable. However, this approach is insufficient, considering that crop growth and yield are affected by the interactive impacts of multiple climate change factors and multiple interrelated biophysical processes. Here, a new comprehensive analysis was conducted to look holistically at the reasons why crop models diverge substantially in climate impact projections and to investigate which biophysical processes and knowledge gaps are key factors affecting this uncertainty and should be given the highest priorities for improvement. First, eight barley models and eight climate projections for the 2050s were applied to investigate the uncertainty from crop model structure in climate impact projections for barley growth and yield at two sites: Jokioinen, Finland (Boreal) and Lleida, Spain (Mediterranean). Sensitivity analyses were then conducted on the responses of major crop processes to major climatic variables including temperature, precipitation, irradiation, and CO2, as well as their interactions, for each of the eight crop models. The results showed that the temperature and CO2 relationships in the models were the major sources of the large discrepancies among the models in climate impact projections. In particular, the impacts of increases in temperature and CO2 on leaf area development were identified as the major causes for the large uncertainty in simulating changes in evapotranspiration, above-ground biomass, and grain yield. Our findings highlight that advancements in understanding the basic processes and thresholds by which climate warming and CO2 increases will affect leaf area development, crop evapotranspiration, photosynthesis, and grain formation in contrasting environments are needed for modeling their impacts.Peer reviewe

    Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe

    Get PDF
    The main aim of the current study was to present the abilities of widely used crop models to simulate four different field crops (winter wheat, spring barley, silage maize and winter oilseed rape). The 13 models were tested under Central European conditions represented by three locations in the Czech Republic, selected using temperature and precipitation gradients for the target crops in this region. Based on observed crop phenology and yield from 1991 to 2010, performances of individual models and their ensemble were analyzed. Modelling of anthesis and maturity was generally best simulated by the ensemble median (EnsMED) compared to the ensemble mean and individual models. The yield was better simulated by the best models than estimated by an ensemble. Higher accuracy was achieved for spring crops, with the best results for silage maize, while the lowest accuracy was for winter oilseed rape according to the index of agreement (IA). Based on EnsMED, the root mean square errors (RMSEs) for yield was 1365 kg/ha for winter wheat, 1105 kg/ha for spring barley, 1861 kg/ha for silage maize and 969 kg/ha for winter oilseed rape. The AQUACROP and EPIC models performed best in terms of spread around the line of best fit (RMSE, IA). In some cases, the individual models failed. For crop rotation simulations, only models with reasonable accuracy (i.e. without failures) across all included crops within the target environment should be selected. Application crop models ensemble is one way to increase the accuracy of predictions, but lower variability of ensemble outputs was confirmed.OA-hybri

    The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    Get PDF
    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late (January-March) sowing dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models

    О перспективе извлечения йода из продукта утилизации окислителя ракетного топлива

    Get PDF
    Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32 degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degree C of further temperature increase and become more variable over space and time

    Comparing correction methods of RCM outputs for improving crop impact projections in the Iberian Peninsula for 21st century

    Get PDF
    Assessment of climate change impacts on crops in regions of complex orography such as the Iberian Peninsula (IP) requires climate model output which is able to describe accurately the observed climate. The high resolution of output provided by Regional Climate Models (RCMs) is expected to be a suitable tool to describe regional and local climatic features, although their simulation results may still present biases. For these reasons, we compared several post-processing methods to correct or reduce the biases of RCM simulations from the ENSEMBLES project for the IP. The bias-corrected datasets were also evaluated in terms of their applicability and consequences in improving the results of a crop model to simulate maize growth and development at two IP locations, using this crop as a reference for summer cropping systems in the region. The use of bias-corrected climate runs improved crop phenology and yield simulation overall and reduced the inter-model variability and thus the uncertainty. The number of observational stations underlying each reference observational dataset used to correct the bias affected the correction performance. Although no single technique showed to be the best one, some methods proved to be more adequate for small initial biases, while others were useful when initial biases were so large as to prevent data application for impact studies. An initial evaluation of the climate data, the bias correction/reduction method and the consequences for impact assessment would be needed to design the most robust, reduced uncertainty ensemble for a specific combination of location, crop, and crop management
    corecore