803 research outputs found
New Focus on the Tales of the EarthLegacy Cores Redistribution Project Completed
Scientific drilling for marine cores began in 1968 under the auspices of the Deep Sea Drilling Project (DSDP), whose initial discoveries included salt domes on the sea floor and formation of oceanic crust by sea-floor spreading along the mid-ocean ridges rift zone. Analyses of cores in various laboratories all over the world provided key information toward a better understanding of Earth’s past, present, and future including the geology of the sea floor, evolution of the Earth, and past climatic changes. With an eye towards future development of analytical tools for core-based research, it was important to maintain cores in as close to their original condition as possible for the years to come. This led to the establishment of large repositories curating cores at 4ºC, conducting sub-sampling, and facilitating non-destructive observation of cores while following well-defined curation policies
Some comparison theorems for weak nonnegative splittings of bounded operators
AbstractThe comparison of the asymptotic rates of convergence of two iteration matrices induced by two splittings of the same matrix has arisen in the works of many authors. In this paper we derive new comparison theorems for weak nonnegative splittings and weak splittings of bounded operators in a general Banach space and rather general cones, and in a Hilbert space, which extend some of the results obtained by Woźnicki (Japan J. Indust. Appl. Math. 11(1994) 289–342) and Marek and Szyld (Numer. Math. 44(1984) 23–35). Furthermore, we present new theorems also for bounded operator which extend some results by Csordas and Varga (Numer. Math. 44. (1984) 23–35) for weak nonnegative splittings of matrices
Mississippi River discharge over the last ~560,000years — Indications from X-ray fluorescence core-scanning
The long term history of terrigenous flux to the Gulf of Mexico via the Mississippi River is hardly known. We here present geochemical and sedimentological data to approximate the varying Mississippi River sediment influx into the northeastern Gulf of Mexico (GoM) over the last six glacial-interglacial cycles (MIS 1 to 14). Our study is based on the IMAGES sediment core MD02-2576 that was recovered from the DeSoto Canyon and is located ~ 200 km south to the recent Mississippi River delta and ~ 150 km east of the recent coastline of Florida. Concentrations of siliciclastic elements in bulk sediment samples were estimated from XRF scanning and calibrated by single bulk XRF-analyses. Elemental ratios of the sedimentary record correspond to ratios from the Mississippi River catchment rather than to the core close Alabama and Mobile River catchments. The siliciclastic major element potassium (K) with enhanced surface concentrations in the northwestern Mississippi River catchment shows varying occurrence downcore and here serves as a proxy for Mississippi River sediment discharge variability. Changes in sedimentation rate and magnetic susceptibility further support the variations in Mississippi River influx. Our data were compared with Mississippi River terrestrial archives in the form of loess and terrace deposits that back up our interpretations of enhanced glacial phase Mississippi River influx triggered by strengthened fluvial river runoff and changing fluvial and ice sheet dynamics. Mississippi River influx was at a maximum during glacial MIS 2/3, MIS 8 and MIS 10. Late glacial MIS 6 deviates from this pattern being a period of reduced Mississippi River influx at the core location, probably due to a westward shift of the Mississippi River delta
Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?
Abstract. To fully understand the global climate dynamics of the warm early Eocene with its reoccurring hyperthermal events, an accurate high-fidelity age model is required. The Ypresian stage (56–47.8 Ma) covers a key interval within the Eocene as it ranges from the warmest marine temperatures in the early Eocene to the long-term cooling trends in the middle Eocene. Despite the recent development of detailed marine isotope records spanning portions of the Ypresian stage, key records to establish a complete astronomically calibrated age model for the Ypresian are still missing. Here we present new high-resolution X-ray fluorescence (XRF) core scanning iron intensity, bulk stable isotope, calcareous nannofossil, and magnetostratigraphic data generated on core material from ODP Sites 1258 (Leg 207, Demerara Rise), 1262, 1263, 1265, and 1267 (Leg 208, Walvis Ridge) recovered in the equatorial and South Atlantic Ocean. By combining new data with published records, a 405 kyr eccentricity cyclostratigraphic framework was established, revealing a 300–400 kyr long condensed interval for magnetochron C22n in the Leg 208 succession. Because the amplitudes are dominated by eccentricity, the XRF data help to identify the most suitable orbital solution for astronomical tuning of the Ypresian. Our new records fit best with the La2010b numerical solution for eccentricity, which was used as a target curve for compiling the Ypresian astronomical timescale (YATS). The consistent positions of the very long eccentricity minima in the geological data and the La2010b solution suggest that the macroscopic feature displaying the chaotic diffusion of the planetary orbits, the transition from libration to circulation in the combination of angles in the precession motion of the orbits of Earth and Mars, occurred ∼ 52 Ma. This adds to the geological evidence for the chaotic behavior of the solar system. Additionally, the new astrochronology and revised magnetostratigraphy provide robust ages and durations for Chrons C21n to C24n (47–54 Ma), revealing a major change in spreading rates in the interval from 51.0 to 52.5 Ma. This major change in spreading rates is synchronous with a global reorganization of the plate–mantle system and the chaotic diffusion of the planetary orbits. The newly provided YATS also includes new absolute ages for biostratigraphic events, magnetic polarity reversals, and early Eocene hyperthermal events. Our new bio- and magnetostratigraphically calibrated stable isotope compilation may act as a reference for further paleoclimate studies of the Ypresian, which is of special interest because of the outgoing warming and increasingly cooling phase. Finally, our approach of integrating the complex comprehensive data sets unearths some challenges and uncertainties but also validates the high potential of chemostratigraphy, magnetostratigraphy, and biostratigraphy in unprecedented detail being most significant for an accurate chronostratigraphy
On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect
Five sections drilled in multiple holes over a depth transect of more than 2200 m at the Walvis Ridge (SE Atlantic) during Ocean Drilling Program (ODP) Leg 208 resulted in the first complete early Paleogene deep-sea record. Here we present high-resolution stratigraphic records spanning a ~4.3 million yearlong interval of the late Paleocene to early Eocene. This interval includes the Paleocene-Eocene thermal maximum (PETM) as well as the Eocene thermal maximum (ETM) 2 event. A detailed chronology was developed with nondestructive X-ray fluorescence (XRF) core scanning records and shipboard color data. These records were used to refine the shipboard-derived spliced composite depth for each site and with a record from ODP Site 1051 were then used to establish a continuous time series over this interval. Extensive spectral analysis reveals that the early Paleogene sedimentary cyclicity is dominated by precession modulated by the short (100 kyr) and long (405 kyr) eccentricity cycles. Counting of precession-related cycles at multiple sites results in revised estimates for the duration of magnetochrons C24r and C25n. Direct comparison between the amplitude modulation of the precession component derived from XRF data and recent models of Earth’s orbital eccentricity suggests that the onset of the PETM and ETM2 are related to a 100-kyr eccentricity maximum. Both events are approximately a quarter of a period offset from a maximum in the 405-kyr eccentricity cycle, with the major difference that the PETM is lagging and ETM2 is leading a 405-kyr eccentricity maximum. Absolute age estimates for the PETM, ETM2, and the magnetochron boundaries that are consistent with recalibrated radiometric ages and recent models of Earth’s orbital eccentricity cannot be precisely determined at present because of too large uncertainties in these methods. Nevertheless, we provide two possible tuning options, which demonstrate the potential for the development of a cyclostratigraphic framework based on the stable 405-kyr eccentricity cycle for the entire Paleogene
Pliocene anisotropy of magnetic susceptibility (AMS) and diatom stratigraphy from the Wilkes Land margin
第3回極域科学シンポジウム 横断セッション「海・陸・氷床から探る後期新生代の南極寒冷圏環境変動」11月26日(月)、27日(火) 2階ラウン
Transient shoaling, over-deepening and settling of the calcite compensation depth at the Eocene-Oligocene transition
The major Cenozoic shift from a shallow (∼3–4 km) to deep (∼4.5 km) calcite compensation depth (CCD) occurred at the Eocene-Oligocene Transition (∼34 Ma), suggesting a strong relationship between calcium carbonate (CaCO3) cycling and Antarctic glaciation. However, the linkages between these two events are debated. Here we present new records of bulk sediment stable isotope and carbonate composition from a depth transect of sites in the low-latitude Pacific Ocean and one site from the South Atlantic Ocean, together with a new benthic foraminiferal stable isotope record (δ13Cb and δ18Ob) from the Pacific where the sedimentary sequence is most expanded. Our records reveal a short-lived (∼3,000 Kyr) CCD shoaling event closely associated with a negative carbon isotope excursion in the latest Eocene. This event is immediately followed by CCD deepening which occurs in two rapid (∼40 Kyr-long) steps. Our data show that the first of these deepening steps represents recovery from the latest Eocene shoaling event while the second was closely associated with a rapid increase in δ18Ob and shows a distinctive over-deepening and settling pattern to >5 and 4.4 km, respectively. These results, together with good agreement between Pacific and South Atlantic records, strongly suggest that the carbon cycle was perturbed globally shortly before the inception of Antarctic glaciation. Once large-scale Antarctic glaciation was initiated, rapid further change in global seawater chemistry triggered transitory deep ocean carbonate burial fluxes far exceeding their early Oligocene steady state values.<br/
Enhanced terrestrial carbon export from East Antarctica during the early Eocene
Terrestrial organic carbon (TerrOC) acts as an important CO2 sink when transported via rivers to the ocean and sequestered in coastal marine sediments. This mechanism might help to modulate atmospheric CO2 levels over short- and long timescales (103 to 106 years), but its importance during past warm climates remains unknown. Here we use terrestrial biomarkers preserved in coastal marine sediment samples from Wilkes Land, East Antarctica (~67°S) to quantify TerrOC burial during the early Eocene (~54.4 to 51.5 Ma). Terrestrial biomarker distributions indicate the delivery of plant-, soil- and peat-derived organic carbon (OC) into the marine realm. Mass accumulation rates of plant- (long-chain n-alkane) and soil-derived (hopane) biomarkers dramatically increase between the earliest Eocene (~54 Ma) and the early Eocene Climatic Optimum (EECO; ~53 Ma). This coincides with increased OC mass accumulation rates and indicates enhanced TerrOC burial during the EECO. Leaf wax δ 2H values indicate that the EECO was characterised by wetter conditions relative to the earliest Eocene, suggesting that hydroclimate exerts a first-order control on TerrOC export. Our results indicate that TerrOC burial in coastal marine sediments UOB Open could have acted as an important negative feedback mechanism during the early Eocene, but also during other warm climate intervals
A new high-resolution chronology for the late Maastrichtian warming event: establishing robust temporal links with the onset of Deccan volcanism
The late Maastrichtian warming event was defined by a global temperature increase of ∼2.5–5 °C that occurred ∼150–300 k.y. before the Cretaceous-Paleogene (K-Pg) mass extinction. This transient warming event has traditionally been associated with a major pulse of Deccan Traps (west-central India) volcanism; however, large uncertainties associated with radiogenic dating methods have long hampered a definitive correlation. Here we present a new high-resolution, single species, benthic stable isotope record from the South Atlantic, calibrated to an updated orbitally tuned age model, to provide a revised chronology of the event, which we then correlate to the latest radiogenic dates of the main Deccan Traps eruption phases. Our data reveal that the initiation of deep-sea warming coincides, within uncertainty, with the onset of the main phase of Deccan volcanism, strongly suggesting a causal link. The onset of deep-sea warming is synchronous with a 405 k.y. eccentricity minimum, excluding a control by orbital forcing alone, although amplified carbon cycle sensitivity to orbital precession is evident during the greenhouse warming. A more precise understanding of Deccan-induced climate change paves the way for future work focusing on the fundamental role of these precursor climate shifts in the K-Pg mass extinction
- …