400 research outputs found

    Upstream-binding factor is sequestered into herpes simplex virus type 1 replication compartments

    Get PDF
    Previous reports have shown that adenovirus recruits nucleolar protein upstream-binding factor (UBF) into adenovirus DNA replication centres. Here, we report that despite having a different mode of viral DNA replication, herpes simplex virus type 1 (HSV-1) also recruits UBF into viral DNA replication centres. Moreover, as with adenovirus, enhanced green fluorescent protein-tagged fusion proteins of UBF inhibit viral DNA replication. We propose that UBF is recruited to the replication compartments to aid replication of HSV-1 DNA. In addition, this is a further example of the role of nucleolar components in viral life cycle

    Electron Tomography Reveals Posttranscriptional Binding of Pre-Mrnps to Specific Fibers in the Nucleoplasm

    Get PDF
    Using electron tomography, we have analyzed whether the Balbiani ring (BR) pre-mRNP particles in transit from the gene to the nuclear pore complex (NPC) are bound to any structure that could impair free diffusion through the nucleoplasm. We show that one-third of the BR particles are in contact with thin connecting fibers (CFs), which in some cases merge into large fibrogranular clusters. The CFs have a specific protein composition different from that of BR particles, as shown by immuno-EM. Moreover, we have identified hrp65 as one of the protein components of the CFs. The sequencing of hrp65 cDNA reveals similarities with hnRNP proteins and splicing factors. However, hrp65 is likely to have a different function because it does not bind to nascent pre-mRNA and is not part of the pre-mRNP itself. Taken together, our observations indicate that pre-mRNPs are not always freely diffusible in the nucleoplasm but interact with fibers of specific structure and composition, which implies that some of the posttranscriptional events that the pre-mRNPs undergo before reaching the NPC occur in a bound state

    Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis

    Get PDF
    Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors

    Paraspeckles: nuclear bodies built on long noncoding RNA

    Get PDF
    Paraspeckles are ribonucleoprotein bodies found in the interchromatin space of mammalian cell nuclei. These structures play a role in regulating the expression of certain genes in differentiated cells by nuclear retention of RNA. The core paraspeckle proteins (PSF/SFPQ, P54NRB/NONO, and PSPC1 [paraspeckle protein 1]) are members of the DBHS (Drosophila melanogaster behavior, human splicing) family. These proteins, together with the long nonprotein-coding RNA NEAT1 (MEN-ϵ/β), associate to form paraspeckles and maintain their integrity. Given the large numbers of long noncoding transcripts currently being discovered through whole transcriptome analysis, paraspeckles may be a paradigm for a class of subnuclear bodies formed around long noncoding RNA

    Altered expression of the suppressors PML and p53 in glioblastoma cells with the antisense-EGF-receptor

    Get PDF
    Gene amplification and enhanced expression of the epidermal growth factor receptor (EGFR) represent the major molecular genetic alteration in glioblastomas and it may play an essential role in cell growth and in the carcinogenic process. On the other hand, the nuclear suppressor proteins PML and p53 are also known to play critical roles in cancer development and in suppressing cell growth. Here we report that, in glioblastoma cells with defective EGFR function, the expressions of both promyelocytic leukaemia (PML) and p53 were altered. Cells that were transfected with the antisense-cDNA of EGFR were found to have more cells in G1 and fewer cells in S phase. In addition, the transfected cells were found to be non-responsive to EGF-induced cell growth. Interestingly, the expression of the suppressors p53 and PML were found to be significantly increased by immunohistochemical assay in the antisense-EGFR cells. Moreover, the PML expression in many of the cells was converted from the nuclear dot pattern into fine-granulated staining pattern. In contrast, the expressions of other cell cycle regulated genes and proto-oncogene, including the cyclin-dependent kinase 4 (cdk4), retinoblastoma, p16INK4a and p21H-ras, were not altered. These data indicate that there are specific inductions of PML and p53 proteins which may account for the increase in G1 and growth arrest in antisense-EGFR treated cells. It also indicates that the EGF, p53 and PML transduction pathways were linked and they may constitute an integral part of an altered growth regulatory programme. The interactions and cross-talks of these critical molecules may be very important in regulating cell growth, differentiation and cellular response to treatment in glioblastomas. © 1999 Cancer Research Campaig

    Functional Interaction of Nuclear Domain 10 and Its Components with Cytomegalovirus after Infections: Cross-Species Host Cells versus Native Cells

    Get PDF
    Species-specificity is one of the major characteristics of cytomegaloviruses (CMVs) and is the primary reason for the lack of a mouse model for the direct infection of human CMV (HCMV). It has been determined that CMV cross-species infections are blocked at the post-entry level by intrinsic cellular defense mechanisms, but few details are known. It is important to explore how CMVs interact with the subnuclear structure of the cross-species host cell. In our present study, we discovered that nuclear domain 10 (ND10) of human cells was not disrupted by murine CMV (MCMV) and that the ND10 of mouse cells was not disrupted by HCMV, although the ND10-disrupting protein, immediate-early protein 1 (IE1), also colocalized with ND10 in cross-species infections. In addition, we found that the UL131-repaired HCMV strain AD169 (vDW215-BADrUL131) can infect mouse cells to produce immediate-early (IE) and early (E) proteins but that neither DNA replication nor viral particles were detectable in mouse cells. Unrepaired AD169 can express IE1 only in mouse cells. In both HCMV-infected mouse cells and MCMV-infected human cells, the knocking-down of ND10 components (PML, Daxx, and SP100) resulted in significantly increased viral-protein production. Our observations provide evidence to support our hypothesis that ND10 and ND10 components might be important defensive factors against the CMV cross-species infection

    A Role for Cytoplasmic PML in Cellular Resistance to Viral Infection

    Get PDF
    PML gene was discovered as a fusion partner with retinoic acid receptor (RAR) α in the t(15:17) chromosomal translocation associated with acute promyelocytic leukemia (APL). Nuclear PML protein has been implicated in cell growth, tumor suppression, apoptosis, transcriptional regulation, chromatin remodeling, DNA repair, and anti-viral defense. The localization pattern of promyelocytic leukemia (PML) protein is drastically altered during viral infection. This alteration is traditionally viewed as a viral strategy to promote viral replication. Although multiple PML splice variants exist, we demonstrate that the ratio of a subset of cytoplasmic PML isoforms lacking exons 5 & 6 is enriched in cells exposed to herpes simplex virus-1 (HSV-1). In particular, we demonstrate that a PML isoform lacking exons 5 & 6, called PML Ib, mediates the intrinsic cellular defense against HSV-1 via the cytoplasmic sequestration of the infected cell protein (ICP) 0 of HSV-1. The results herein highlight the importance of cytoplasmic PML and call for an alternative, although not necessarily exclusive, interpretation regarding the redistribution of PML that is seen in virally infected cells
    corecore