12 research outputs found

    Diesel particulate matter emission factors and air quality implications from in–service rail in Washington State, USA

    Get PDF
    AbstractWe sought to evaluate the air quality implications of rail traffic at two sites in Washington State. Our goals were to quantify the exposure to diesel particulate matter (DPM) and airborne coal dust from current trains for residents living near the rail lines and to measure the DPM and black carbon emission factors (EFs). We chose two sites in Washington State, one at a residence along the rail lines in the city of Seattle and one near the town of Lyle in the Columbia River Gorge (CRG). At each site, we made measurements of size–segregated particulate matter (PM1, PM2.5 and PM10), CO2 and meteorology, and used a motion–activated camera to capture video of each train for identification. We measured an average DPM EF of 0.94g/kg diesel fuel, with an uncertainty of 20%, based on PM1 and CO2 measurements from more than 450 diesel trains. We found no significant difference in the average DPM EFs measured at the two sites. Open coal trains have a significantly higher concentration of particles greater than 1μm diameter, likely coal dust. Measurements of black carbon (BC) at the CRG site show a strong correlation with PM1 and give an average BC/DPM ratio of 52% from diesel rail emissions. Our measurements of PM2.5 show that living close to the rail lines significantly increases PM2.5 exposure. For the one month of measurements at the Seattle site, the average PM2.5 concentration was 6.8μg/m3 higher near the rail lines compared to the average from several background locations. Because the excess PM2.5 exposure for residents living near the rail lines is likely to be linearly related to the diesel rail traffic density, a 50% increase in rail traffic may put these residents over the new U.S. National Ambient Air Quality Standards, an annual average of 12μg/m3

    Natural climate solutions

    Get PDF
    Our thanks for inputs by L. Almond, A. Baccini, A. Bowman, S. CookPatton, J. Evans, K. Holl, R. Lalasz, A. Nassikas, M. Spalding, M. Wolosin, and expert elicitation respondents. Our thanks for datasets developed by the Hansen lab and the NESCent grasslands working group (C. Lehmann, D. Griffith, T. M. Anderson, D. J. Beerling, W. Bond, E. Denton, E. Edwards, E. Forrestel, D. Fox, W. Hoffmann, R. Hyde, T. Kluyver, L. Mucina, B. Passey, S. Pau, J. Ratnam, N. Salamin, B. Santini, K. Simpson, M. Smith, B. Spriggs, C. Still, C. Strömberg, and C. P. Osborne). This study was made possible by funding from the Doris Duke Charitable Foundation. Woodbury was supported in part by USDA-NIFA Project 2011-67003-30205 Data deposition: A global spatial dataset of reforestation opportunities has been deposited on Zenodo (https://zenodo.org/record/883444). This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710465114/-/DCSupplemental.Peer reviewedPublisher PD

    Second asymptomatic carotid surgery trial (ACST-2): a randomised comparison of carotid artery stenting versus carotid endarterectomy

    Get PDF
    Background: Among asymptomatic patients with severe carotid artery stenosis but no recent stroke or transient cerebral ischaemia, either carotid artery stenting (CAS) or carotid endarterectomy (CEA) can restore patency and reduce long-term stroke risks. However, from recent national registry data, each option causes about 1% procedural risk of disabling stroke or death. Comparison of their long-term protective effects requires large-scale randomised evidence. Methods: ACST-2 is an international multicentre randomised trial of CAS versus CEA among asymptomatic patients with severe stenosis thought to require intervention, interpreted with all other relevant trials. Patients were eligible if they had severe unilateral or bilateral carotid artery stenosis and both doctor and patient agreed that a carotid procedure should be undertaken, but they were substantially uncertain which one to choose. Patients were randomly allocated to CAS or CEA and followed up at 1 month and then annually, for a mean 5 years. Procedural events were those within 30 days of the intervention. Intention-to-treat analyses are provided. Analyses including procedural hazards use tabular methods. Analyses and meta-analyses of non-procedural strokes use Kaplan-Meier and log-rank methods. The trial is registered with the ISRCTN registry, ISRCTN21144362. Findings: Between Jan 15, 2008, and Dec 31, 2020, 3625 patients in 130 centres were randomly allocated, 1811 to CAS and 1814 to CEA, with good compliance, good medical therapy and a mean 5 years of follow-up. Overall, 1% had disabling stroke or death procedurally (15 allocated to CAS and 18 to CEA) and 2% had non-disabling procedural stroke (48 allocated to CAS and 29 to CEA). Kaplan-Meier estimates of 5-year non-procedural stroke were 2·5% in each group for fatal or disabling stroke, and 5·3% with CAS versus 4·5% with CEA for any stroke (rate ratio [RR] 1·16, 95% CI 0·86–1·57; p=0·33). Combining RRs for any non-procedural stroke in all CAS versus CEA trials, the RR was similar in symptomatic and asymptomatic patients (overall RR 1·11, 95% CI 0·91–1·32; p=0·21). Interpretation: Serious complications are similarly uncommon after competent CAS and CEA, and the long-term effects of these two carotid artery procedures on fatal or disabling stroke are comparable. Funding: UK Medical Research Council and Health Technology Assessment Programme

    Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    Get PDF
    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems

    Diesel particulate matter and coal dust from trains in the Columbia River Gorge, Washington State, USA

    No full text
    We examined the emissions of diesel particulate matter (DPM) and coal dust from trains in the Columbia River Gorge (CRG) in Washington State by measuring PM1, PM2.5, CO2, and black carbon (BC) during the summer of 2014. We also used video cameras to identify the train type and speed. During the two-month period, we identified 293 freight trains and 74 coal trains that gave a PM2.5 enhancement of more than 3.0 μg/m3. We found an average PM2.5 enhancements of 8.8 and 16.7 μg/m3, respectively, for freight and coal trains. For most freight trains (52%), and a smaller fraction of coal trains (11%), we found a good correlation between PM2.5 and CO2. Using this correlation, we calculated a mean DPM emission factor (EF) of 1.2 gm/kg fuel consumed, with an uncertainty of 20%. For four coal trains, the videos revealed large plumes of coal dust emanating from the uncovered coal cars. These trains also had the highest peak PM2.5 concentrations recorded during our study (53e232 mg/ m3). Trains with visible coal dust were observed for 5.4% of all coal trains, but 10.3% when the effective wind speed was greater than 90 km/h. We also found that nearly all coal trains emit coal dust based on (1) statistically higher PM2.5 enhancements from coal trains compared to freight trains; (2) the fact that most coal trains showed a weak correlation between PM2.5 and CO2, whereas most freight trains showed a strong relationship; (3) a statistically lower BC/PM2.5 enhancement ratio for coal trains compared to freight trains; and (4) a statistically lower PM1/PM2.5 enhancement ratio for coal trains compared to freight trains. Our results demonstrate that, on average, passage of a diesel powered open-top coal train result in nearly twice as much respirable PM2.5 compared to passage of a diesel-powered freight train

    Antibacterial Envelope to Prevent Cardiac Implantable Device Infection

    No full text
    Background Infections after placement of cardiac implantable electronic devices (CIEDs) are associated with substantial morbidity and mortality. There is limited evidence on prophylactic strategies, other than the use of preoperative antibiotics, to prevent such infections. Methods We conducted a randomized, controlled clinical trial to assess the safety and efficacy of an absorbable, antibiotic-eluting envelope in reducing the incidence of infection associated with CIED implantations. Patients who were undergoing a CIED pocket revision, generator replacement, or system upgrade or an initial implantation of a cardiac resynchronization therapy defibrillator were randomly assigned, in a 1:1 ratio, to receive the envelope or not. Standard-of-care strategies to prevent infection were used in all patients. The primary end point was infection resulting in system extraction or revision, long-term antibiotic therapy with infection recurrence, or death, within 12 months after the CIED implantation procedure. The secondary end point for safety was procedure-related or system-related complications within 12 months. Results A total of 6983 patients underwent randomization: 3495 to the envelope group and 3488 to the control group. The primary end point occurred in 25 patients in the envelope group and 42 patients in the control group (12-month Kaplan-Meier estimated event rate, 0.7% and 1.2%, respectively; hazard ratio, 0.60; 95% confidence interval [CI], 0.36 to 0.98; P=0.04). The safety end point occurred in 201 patients in the envelope group and 236 patients in the control group (12-month Kaplan-Meier estimated event rate, 6.0% and 6.9%, respectively; hazard ratio, 0.87; 95% CI, 0.72 to 1.06; P<0.001 for noninferiority). The mean (+/- SD) duration of follow-up was 20.7 +/- 8.5 months. Major CIED-related infections through the entire follow-up period occurred in 32 patients in the envelope group and 51 patients in the control group (hazard ratio, 0.63; 95% CI, 0.40 to 0.98). Conclusions Adjunctive use of an antibacterial envelope resulted in a significantly lower incidence of major CIED infections than standard-of-care infection-prevention strategies alone, without a higher incidence of complications
    corecore