208 research outputs found

    Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation

    Get PDF
    Previous studies have shown that the translation level of in vitro transcribed messenger RNA (mRNA) is enhanced when its uridines are replaced with pseudouridines; however, the reason for this enhancement has not been identified. Here, we demonstrate that in vitro transcripts containing uridine activate RNA-dependent protein kinase (PKR), which then phosphorylates translation initiation factor 2-alpha (eIF-2α), and inhibits translation. In contrast, in vitro transcribed mRNAs containing pseudouridine activate PKR to a lesser degree, and translation of pseudouridine-containing mRNAs is not repressed. RNA pull-down assays demonstrate that mRNA containing uridine is bound by PKR more efficiently than mRNA with pseudouridine. Finally, the role of PKR is validated by showing that pseudouridine- and uridine-containing RNAs were translated equally in PKR knockout cells. These results indicate that the enhanced translation of mRNAs containing pseudouridine, compared to those containing uridine, is mediated by decreased activation of PKR

    Site-selective C-C modification of proteins at neutral pH using organocatalyst-mediated cross aldol ligations

    Get PDF
    The bioconjugation of proteins with small molecules has proved an invaluable strategy for probing and perturbing biological mechanisms. The general use of chemical methods for protein functionalisation can be limited however by the requirement for complicated reaction partners to be present in large excess, and harsh conditions which are incompatible with many protein scaffolds. Herein we describe a site-selective organocatalyst-mediated protein aldol ligation (OPAL) that affords stable carbon-carbon linked bioconjugates at neutral pH. OPAL enables rapid modification of proteins using simple aldehyde probes in minimal excess, and is utilised here in the affinity tagging of proteins in cell lysate. Furthermore we demonstrate that the β-hydroxy aldehyde OPAL product can be functionalised again at neutral pH in a tandem organocatalyst-mediated oxime ligation. This tandem strategy is showcased in the ‘chemical mimicry’ of a previously inaccessible natural dual post-translationally modified protein integral to the pathogenesis of the neglected tropical disease Leishmaniasis

    A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs

    Full text link
    Structural interactions that enable electron transfer to cytochromeâ P450 (CYP450) from its redox partner CYP450â reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membraneâ bound functional complex to reveal interactions between the fullâ length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochromeâ b5 (cytâ b5), Argâ 125 on the Câ helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study proteinâ protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.Auf der Grundlage einer Strukturanalyse von Cytochrom P450 (CYP450) im Komplex mit seinem Redoxpartner kann der Pfad des selektiven Elektronentransfers verstanden werden. Strukturelle Wechselwirkungen in einem solchen Komplex, verankert in einer Lipidmembran, sind eine Grundvoraussetzung für diese Funktion. Der Stoffwechsel von Wirkâ und Fremdstoffen durch diverse mikrosomale CYPs in ihrem nativen Membranumfeld wird aufgeklärt.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144609/1/ange201802210.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144609/2/ange201802210-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144609/3/ange201802210_am.pd

    Imaging Trans-Cellular Neurexin-Neuroligin Interactions by Enzymatic Probe Ligation

    Get PDF
    Neurexin and neuroligin are transmembrane adhesion proteins that play an important role in organizing the neuronal synaptic cleft. Our lab previously reported a method for imaging the trans-synaptic binding of neurexin and neuroligin called BLINC (Biotin Labeling of INtercellular Contacts). In BLINC, biotin ligase (BirA) is fused to one protein while its 15-amino acid acceptor peptide substrate (AP) is fused to the binding partner. When the two fusion proteins interact across cellular junctions, BirA catalyzes the site-specific biotinylation of AP, which can be read out by staining with streptavidin-fluorophore conjugates. Here, we report that BLINC in neurons cannot be reproduced using the reporter constructs and labeling protocol previously described. We uncover the technical reasons for the lack of reproducibilty and then re-design the BLINC reporters and labeling protocol to achieve neurexin-neuroligin BLINC imaging in neuron cultures. In addition, we introduce a new method, based on lipoic acid ligase instead of biotin ligase, to image trans-cellular neurexin-neuroligin interactions in human embryonic kidney cells and in neuron cultures. This method, called ID-PRIME for Interaction-Dependent PRobe Incorporation Mediated by Enzymes, is more robust than BLINC due to higher surface expression of lipoic acid ligase fusion constructs, gives stronger and more localized labeling, and is more versatile than BLINC in terms of signal readout. ID-PRIME expands the toolkit of methods available to study trans-cellular protein-protein interactions in living systems.National Institutes of Health (U.S.) (DP1 OD003961

    Quantum Dot Targeting with Lipoic Acid Ligase and HaloTag for Single-Molecule Imaging on Living Cells

    Get PDF
    We present a methodology for targeting quantum dots to specific proteins on living cells in two steps. In the first step, Escherichia coli lipoic acid ligase (LplA) site-specifically attaches 10-bromodecanoic acid onto a 13 amino acid recognition sequence that is genetically fused to a protein of interest. In the second step, quantum dots derivatized with HaloTag, a modified haloalkane dehalogenase, react with the ligated bromodecanoic acid to form a covalent adduct. We found this targeting method to be specific, fast, and fully orthogonal to a previously reported and analogous quantum dot targeting method using E. coli biotin ligase and streptavidin. We used these two methods in combination for two-color quantum dot visualization of different proteins expressed on the same cell or on neighboring cells. Both methods were also used to track single molecules of neurexin, a synaptic adhesion protein, to measure its lateral diffusion in the presence of neuroligin, its trans-synaptic adhesion partner.National Institutes of Health (U.S.) (R01 GM072670)Camille & Henry Dreyfus FoundationMassachusetts Institute of Technology. Computational and Systems Biology Program. MIT-Merck Postdoctoral Fellowshi

    Site-selective incorporation and ligation of protein aldehydes

    Get PDF
    The incorporation of aldehyde handles into proteins, and subsequent chemical reactions thereof, is rapidly proving to be an effective way of generating homogeneous, covalently linked protein constructs that can display a vast array of functionality. In this review, we discuss methods for introducing aldehydes into target proteins, and summarise the ligation strategies for site-selective modification of proteins containing this class of functional handles

    Structure-Guided Engineering of a Pacific Blue Fluorophore Ligase for Specific Protein Imaging in Living Cells

    Get PDF
    Mutation of a gatekeeper residue, tryptophan 37, in E. coli lipoic acid ligase (LplA), expands substrate specificity such that unnatural probes much larger than lipoic acid can be recognized. This approach, however, has not been successful for anionic substrates. An example is the blue fluorophore Pacific Blue, which is isosteric to 7-hydroxycoumarin and yet not recognized by the latter’s ligase ([superscript W37V]LplA) or any tryptophan 37 point mutant. Here we report the results of a structure-guided, two-residue screening matrix to discover an LplA double mutant, [superscript E20G/W37T]LplA, that ligates Pacific Blue as efficiently as [superscript W37V]LplA ligates 7-hydroxycoumarin. The utility of this Pacific Blue ligase for specific labeling of recombinant proteins inside living cells, on the cell surface, and inside acidic endosomes is demonstrated.National Institutes of Health (U.S.) (Grant R01 GM072670)Camille & Henry Dreyfus FoundationAmerican Chemical SocietyMassachusetts Institute of Technolog
    corecore