168 research outputs found

    Protist diversity on a nature reserve in NW England − with particular reference to their role in soil biogenic silicon pools

    Get PDF
    Soil protists play fundamental roles in many earth system processes, yet we are only beginning to understand the true diversity of the organisms involved. In this study we used conventional (microscopy-based) methods to characterise the diversity and estimate protist population sizes in soils from a variety of distinct habitats within Mere Sands Wood nature reserve in NW England. We produced population size data for over ninety soil protists belonging to two major eukaryotic functional groups: testate amoebae (TA) and diatoms, adding substantial ‘cryptic diversity’ to the nature reserves recorded biota. From these population size data we estimated relative contributions of TA and diatoms to soil biogenic silicon (BSi) pools and found significant correlations between taxon richness and the TA and diatom Si pool. This could indicate that protist functional diversity can influence terrestrial BSi pools, especially in early successional plant communities where TA and diatoms can potentially increase Si mineralisation and/or create Si ‘hot spots’ and hence, the biological availability of this element for subsequent plant uptake. TA were particularly abundant in mor humus type soils further supporting the idea that they could be important players in nutrient cycling in such soils. Overall, we demonstrate this is a useful approach in order to start to attempt to estimate the role of protists in the Si cycle and other ecological processes

    3-Deazaneplanocin A (DZNep), an Inhibitor of the Histone Methyltransferase EZH2, Induces Apoptosis and Reduces Cell Migration in Chondrosarcoma Cells

    Get PDF
    ObjectiveGrowing evidences indicate that the histone methyltransferase EZH2 (enhancer of zeste homolog 2) may be an appropriate therapeutic target in some tumors. Indeed, a high expression of EZH2 is correlated with poor prognosis and metastasis in many cancers. In addition, 3-Deazaneplanocin A (DZNep), an S-adenosyl-L homocysteine hydrolase inhibitor which induces EZH2 protein depletion, leads to cell death in several cancers and tumors. The aim of this study was to determine whether an epigenetic therapy targeting EZH2 with DZNep may be also efficient to treat chondrosarcomas.MethodsEZH2 expression was determined by immunohistochemistry and western-blot. Chondrosarcoma cell line CH2879 was cultured in the presence of DZNep, and its growth and survival were evaluated by counting adherent cells periodically. Apoptosis was assayed by cell cycle analysis, Apo2.7 expression using flow cytometry, and by PARP cleavage using western-blot. Cell migration was assessed by wound healing assay.ResultsChondrosarcomas (at least with high grade) highly express EZH2, at contrary to enchondromas or chondrocytes. In vitro, DZNep inhibits EZH2 protein expression, and subsequently reduces the trimethylation of lysine 27 on histone H3 (H3K27me3). Interestingly, DZNep induces cell death of chondrosarcoma cell lines by apoptosis, while it slightly reduces growth of normal chondrocytes. In addition, DZNep reduces cell migration.ConclusionThese results indicate that an epigenetic therapy that pharmacologically targets EZH2 via DZNep may constitute a novel approach to treat chondrosarcomas

    Motivic Eilenberg-Maclane spaces

    Get PDF
    This paper is the second one in a series of papers about operations in motivic cohomology. Here we show that in the context of smooth schemes over a field of characteristic zero all the bi-stable operations can be obtained in the usual way from the motivic reduced powers and the Bockstein homomorphism.Comment: This version is very close to the final version accepted to the publication in Publ. IHE

    Superfluid rotation sensor with helical laser trap

    Full text link
    The macroscopic quantum states of the dilute bosonic ensemble in helical laser trap at the temperatures about 106K10^{-6}\bf {K} are considered in the framework of the Gross-Pitaevskii equation. The helical interference pattern is composed of the two counter propagating Laguerre-Gaussian optical vortices with opposite orbital angular momenta \ell \hbar and this pattern is driven in rotation via angular Doppler effect. Macroscopic observables including linear momentum and angular momentum of the atomic cloud are evaluated explicitly. It is shown that rotation of reference frame is transformed into translational motion of the twisted matter wave. The speed of translation equals the group velocity of twisted wavetrain Vz=Ω/kV_z= \Omega\ell/ k and alternates with a sign of the frame angular velocity Ω\Omega and helical pattern handedness \ell. We address detection of this effect using currently accessible laboratory equipment with emphasis on the difference between quantum and classical fluids.Comment: 8 pages, 3 figures, accepted to publication Journ.Low Temp.Phy

    FOXA1 repression is associated with loss of BRCA1 and increased promoter methylation and chromatin silencing in breast cancer

    Get PDF
    FOXA1 expression correlates with the breast cancer luminal subtype and patient survival. RNA and protein analysis of a panel of breast cancer cell lines revealed that BRCA1 deficiency is associated with the downregulation of FOXA1 expression. Knockdown of BRCA1 resulted in the downregulation of FOXA1 expression and enhancement of FOXA1 promoter methylation in MCF-7 breast cancer cells, whereas the reconstitution of BRCA1 in Brca1-deficent mouse mammary epithelial cells (MMECs) promoted Foxa1 expression and methylation. These data suggest that BRCA1 suppresses FOXA1 hypermethylation and silencing. Consistently, the treatment of MMECs with the DNA methylation inhibitor 5-aza-2'-deoxycitydine induced Foxa1 mRNA expression. Furthermore, treatment with GSK126, an inhibitor of EZH2 methyltransferase activity, induced FOXA1 expression in BRCA1-deficient but not in BRCA1-reconstituted MMECs. Likewise, the depletion of EZH2 by small interfering RNA enhanced FOXA1 mRNA expression. Chromatin immunoprecipitation (ChIP) analysis demonstrated that BRCA1, EZH2, DNA methyltransferases (DNMT)1/3a/3b and H3K27me3 are recruited to the endogenous FOXA1 promoter, further supporting the hypothesis that these proteins interact to modulate FOXA1 methylation and repression. Further co-immunoprecipitation and ChIP analysis showed that both BRCA1 and DNMT3b form complexes with EZH2 but not with each other, consistent with the notion that BRCA1 binds to EZH2 and negatively regulates its methyltransferase activity. We also found that EZH2 promotes and BRCA1 impairs the deposit of the gene silencing histone mark H3K27me3 on the FOXA1 promoter. These associations were validated in a familial breast cancer patient cohort. Integrated analysis of the global gene methylation and expression profiles of a set of 33 familial breast tumours revealed that FOXA1 promoter methylation is inversely correlated with the transcriptional expression of FOXA1 and that BRCA1 mutation breast cancer is significantly associated with FOXA1 methylation and downregulation of FOXA1 expression, providing physiological evidence to our findings that FOXA1 expression is regulated by methylation and chromatin silencing and that BRCA1 maintains FOXA1 expression through suppressing FOXA1 gene methylation in breast cancer.Oncogene advance online publication, 22 December 2014; doi:10.1038/onc.2014.421.published_or_final_versio

    Expression of emotional arousal in two different piglet call types

    Get PDF
    Humans as well as many animal species reveal their emotional state in their voice. Vocal features show strikingly similar correlation patterns with emotional states across mammalian species, suggesting that the vocal expression of emotion follows highly conserved signalling rules. To fully understand the principles of emotional signalling in mammals it is, however, necessary to also account for any inconsistencies in the way that they are acoustically encoded. Here we investigate whether the expression of emotions differs between call types produced by the same species. We compare the acoustic structure of two common piglet calls—the scream (a distress call) and the grunt (a contact call)—across three levels of arousal in a negative situation. We find that while the central frequency of calls increases with arousal in both call types, the amplitude and tonal quality (harmonic-to-noise ratio) show contrasting patterns: as arousal increased, the intensity also increased in screams, but not in grunts, while the harmonicity increased in screams but decreased in grunts. Our results suggest that the expression of arousal depends on the function and acoustic specificity of the call type. The fact that more vocal features varied with arousal in scream calls than in grunts is consistent with the idea that distress calls have evolved to convey information about emotional arousal

    Combined inhibition of EZH2 and ATM is synthetic lethal in BRCA1-deficient breast cancer

    Get PDF
    Background: The majority of BRCA1-mutant breast cancers are characterized by a triple-negative phenotype and a basal-like molecular subtype, associated with aggressive clinical behavior. Current treatment options are limited, highlighting the need for the development of novel targeted therapies for this tumor subtype. Methods: Our group previously showed that EZH2 is functionally relevant in BRCA1-deficient breast tumors and blocking EZH2 enzymatic activity could be a potent treatment strategy. To validate the role of EZH2 as a therapeutic target and to identify new synergistic drug combinations, we performed a high-throughput drug combination screen in various cell lines derived from BRCA1-deficient and -proficient mouse mammary tumors. Results: We identified the combined inhibition of EZH2 and the proximal DNA damage response kinase ATM as a novel synthetic lethality-based therapy for the treatment of BRCA1-deficient breast tumors. We show that the combined treatment with the EZH2 inhibitor GSK126 and the ATM inhibitor AZD1390 led to reduced colony formation, increased genotoxic stress, and apoptosis-mediated cell death in BRCA1-deficient mammary tumor cells in vitro. These findings were corroborated by in vivo experiments showing that simultaneous inhibition of EZH2 and ATM significantly increased anti-tumor activity in mice bearing BRCA1-deficient mammary tumors. Conclusion: Taken together, we identified a synthetic lethal interaction between EZH2 and ATM and propose this synergistic interaction as a novel molecular combination for the treatment of BRCA1-mutant breast cancer.Toxicolog

    Analysis of single nucleotide polymorphisms in the FAS and CTLA-4 genes of peripheral T-cell lymphomas

    Get PDF
    Angioimmunoblastic T-cell lymphoma (AILT) represents a subset of T-cell lymphomas but resembles an autoimmune disease in many of its clinical aspects. Despite the phenotype of effector T-cells and high expression of FAS and CTLA-4 receptor molecules, tumor cells fail to undergo apoptosis. We investigated single nucleotide polymorphisms (SNPs) of the FAS and CTLA-4 genes in 94 peripheral T-cell lymphomas. Although allelic frequencies of some FAS SNPs were enriched in AILT cases, none of these occurred at a different frequency compared to healthy individuals. Therefore, SNPs in these genes are not associated with the apoptotic defect and autoimmune phenomena in AILT

    Empowering Qualitative Research Methods in Education with Artificial Intelligence

    Get PDF
    Artificial Intelligence is one of the fastest growing disciplines, disrupting many sectors. Originally mainly for computer scientists and engineers, it has been expanding its horizons and empowering many other disciplines contributing to the development of many novel applications in many sectors. These include medicine and health care, business and finance, psychology and neuroscience, physics and biology to mention a few. However, one of the disciplines in which artificial intelligence has not been fully explored and exploited yet is education. In this discipline, many research methods are employed by scholars, lecturers and practitioners to investigate the impact of different instructional approaches on learning and to understand the ways skills and knowledge are acquired by learners. One of these is qualitative research, a scientific method grounded in observations that manipulates and analyses non-numerical data. It focuses on seeking answers to why and how a particular observed phenomenon occurs rather than on its occurrences. This study aims to explore and discuss the impact of artificial intelligence on qualitative research methods. In particular, it focuses on how artificial intelligence have empowered qualitative research methods so far, and how it can be used in education for enhancing teaching and learning
    corecore