6 research outputs found

    Intravenous human umbilical cord-derived mesenchymal stromal cell administration in models of moderate and severe intracerebral hemorrhage

    Get PDF
    Intracerebral hemorrhage (ICH) is as a life-threatening condition that can occur in young adults, often causing long-term disability. Recent preclinical data suggests mesenchymal stromal cell (MSC)-based therapies as promising options to minimize brain damage after ICH. However, therapeutic evidence and mechanistic insights are still limited, particularly when compared to other disorders such as ischemic stroke. Herein, we employed a model of collagenase-induced ICH in young adult rats to investigate the potential therapeutic effects of an intravenous injection of human umbilical cord Wharton's jelly-derived MSCs (hUC-MSCs). Two doses of collagenase were used to cause moderate or severe hemorrhages. Magnetic resonance imaging showed that animals treated with hUC-MSCs after moderate ICH had smaller residual hematoma volumes than vehicle-treated rats, whereas the cell therapy failed to decrease the hematoma volume in animals with a severe ICH. Functional assessments (rotarod and elevated body swing tests) were performed for up to 21 days after ICH. Enduring neurological impairments were seen only in animals subjected to severe ICH, but the cell therapy did not induce statistically significant improvements in the functional recovery. The biodistribution of Technetium-99m-labeled hUC-MSCs was also evaluated, showing that most cells were found in organs such as the spleen and lungs 24 h after transplantation. Nevertheless, it was possible to detect a weak signal in the brain, which was higher in the ipsilateral hemisphere of rats subjected to a severe ICH. These data indicate that hUC-MSCs have moderately beneficial effects in cases of less severe brain hemorrhages in rats by decreasing the residual hematoma volume, and that optimization of the therapy is still necessary

    Human Wharton's jelly mesenchymal stem cells protect neural cells from oxidative stress through paracrine mechanisms

    Get PDF
    Aim: Mesenchymal stem cells (MSCs) have neuroprotective and immunomodulatory properties, which are partly mediated by extracellular vesicles (EVs) secretion. We aimed to evaluate the effects of human Wharton's jelly-derived MSCs (WJ-MSCs) and their EVs on rat hippocampal cultures subjected to hydrogen peroxide (H2O2). Materials & methods: Hippocampal dissociated cultures were either co-cultured with WJ-MSCs or treated with their EVs prior to H2O2 exposure and reactive oxygen species levels and cell viability were evaluated. Results: Coculture with WJ-MSCs or pre-incubation with EVs prior to the insult reduced reactive oxygen species after H2O2 exposure. Cell viability was improved only when coculture was maintained following the insult, while EVs did not significantly improve cell viability. Conclusion: WJ-MSCs have potential antioxidant and neuroprotective effects on hippocampal cultures which might be partially mediated by EVs

    Human Wharton's jelly mesenchymal stem cells protect neural cells from oxidative stress through paracrine mechanisms

    No full text
    Aim: Mesenchymal stem cells (MSCs) have neuroprotective and immunomodulatory properties, which are partly mediated by extracellular vesicles (EVs) secretion. We aimed to evaluate the effects of human Wharton's jelly-derived MSCs (WJ-MSCs) and their EVs on rat hippocampal cultures subjected to hydrogen peroxide (H2O2). Materials & methods: Hippocampal dissociated cultures were either co-cultured with WJ-MSCs or treated with their EVs prior to H2O2 exposure and reactive oxygen species levels and cell viability were evaluated. Results: Coculture with WJ-MSCs or pre-incubation with EVs prior to the insult reduced reactive oxygen species after H2O2 exposure. Cell viability was improved only when coculture was maintained following the insult, while EVs did not significantly improve cell viability. Conclusion: WJ-MSCs have potential antioxidant and neuroprotective effects on hippocampal cultures which might be partially mediated by EVs

    Inhibition of SARS-CoV-2 infection in human iPSC-derived cardiomyocytes by targeting the Sigma-1 receptor disrupts cytoarchitecture and beating

    No full text
    SARS-CoV-2 infects cardiac cells and causes heart dysfunction. Conditions such as myocarditis and arrhythmia have been reported in COVID-19 patients. The Sigma-1 receptor (S1R) is a ubiquitously expressed chaperone that plays a central role in cardiomyocyte function. S1R has been proposed as a therapeutic target because it may affect SARS-CoV-2 replication; however, the impact of the inhibition of S1R in human cardiomyocytes remains to be described. In this study, we investigated the consequences of S1R inhibition in iPSC-derived human cardiomyocytes (hiPSC-CM). SARS-CoV-2 infection in hiPSC-CM was productive and reduced cell survival. S1R inhibition decreased both the number of infected cells and viral particles after 48 hours. S1R inhibition also prevented the release of pro-inflammatory cytokines and cell death. Although the S1R antagonist NE-100 triggered those protective effects, it compromised cytoskeleton integrity by downregulating the expression of structural-related genes and reducing beating frequency. Our findings suggest that the detrimental effects of S1R inhibition in human cardiomyocytes’ integrity may abrogate its therapeutic potential against COVID and should be carefully considered
    corecore