324 research outputs found

    Space is the Place: European jazz festivals as cultural heritage sites

    Get PDF
    The JPI-Heritage Plus supported Cultural Heritage and Improvised Music in European Festivals (CHIME) project was established to examine the workings of jazz festivals and their relationship to cultural heritage as discursive practice. Jazz festivals occupy a significant – if undervalued – place in the ecologies of Europe’s cultural heritage, with their dynamic and synergetic relationship to spaces and cultural sites. Drawing on a number of case studies and interviews with members of the Europe Jazz Network, this article presents a typology of European jazz festivals and cultural heritage sites that can be used to inform the different ways in which jazz offers meaning to specific groups and locations. By viewing jazz festivals through the lens of cultural heritage, we can begin to challenge reified presentations of heritage that promote uncomplicated interpretations of nations, people and their associated cultural narratives. Festivals offer meaning to specific groups through acts of remembrance or commemoration, they have the potential to engage with a multitude of voices, and their locations enable people to negotiate a sense of belonging or to (re)consider their place in the world

    NF-ÎșB perturbation reveals unique immunomodulatory functions in Prx1 + Fibroblasts that Promote Development of Atopic Dermatitis

    Get PDF
    Skin is composed of diverse cell populations that cooperatively maintain homeostasis. Up-regulation of the nuclear factor ĐșB (NF-ĐșB) pathway may lead to the development of chronic inflammatory disorders of the skin, but its role during the early events remains unclear. Through analysis of single-cell RNA sequencing data via iterative random forest leave one out prediction, an explainable artificial intelligence method, we identified an immunoregulatory role for a unique paired related homeobox-1 (Prx1)+ fibroblast subpopulation. Disruption of Ikkb-NF-ĐșB under homeostatic conditions in these fibroblasts paradoxically induced skin inflammation due to the overexpression of C-C motif chemokine ligand 11 (CCL11; or eotaxin-1) characterized by eosinophil infiltration and a subsequent TH2 immune response. Because the inflammatory phenotype resembled that seen in human atopic dermatitis (AD), we examined human AD skin samples and found that human AD fibroblasts also overexpressed CCL11 and that perturbation of Ikkb-NF-ĐșB in primary human dermal fibroblasts up-regulated CCL11. Monoclonal antibody treatment against CCL11 was effective in reducing the eosinophilia and TH2 inflammation in a mouse model. Together, the murine model and human AD specimens point to dysregulated Prx1+ fibroblasts as a previously unrecognized etiologic factor that may contribute to the pathogenesis of AD and suggest that targeting CCL11 may be a way to treat AD-like skin lesions. © 2022 The Authors, some rights reserve

    POMK regulates dystroglycan function via LARGE-mediated elongation of matriglycan

    Get PDF
    Matriglycan [-GlcA-ÎČ1,3-Xyl-α1,3-]n serves as a scaffold in many tissues for extracellular matrix proteins containing laminin-G domains including laminin, agrin, and perlecan. Like-acetylglucosaminyltransferase-1 (LARGE1) synthesizes and extends matriglycan on α-dystroglycan (α-DG) during skeletal muscle differentiation and regeneration; however, the mechanisms which regulate matriglycan elongation are unknown. Here, we show that Protein O-Mannose Kinase (POMK), which phosphorylates mannose of core M3 (GalNac-ÎČ1,3-GlcNac-ÎČ1,4-Man) preceding matriglycan synthesis, is required for LARGE1-mediated generation of full-length matriglycan on α-DG (~150 kDa). In the absence of Pomk in mouse skeletal muscle, LARGE1 synthesizes a very short matriglycan resulting in a ~90 kDa α-DG which binds laminin but cannot prevent eccentric contraction-induced force loss or muscle pathology. Solution NMR spectroscopy studies demonstrate that LARGE1 directly interacts with core M3 and binds preferentially to the phosphorylated form. Collectively, our study demonstrates that phosphorylation of core M3 by POMK enables LARGE1 to elongate matriglycan on α-DG, thereby preventing muscular dystrophy

    Adaptation and Preadaptation of Salmonella enterica to Bile

    Get PDF
    Bile possesses antibacterial activity because bile salts disrupt membranes, denature proteins, and damage DNA. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile. Sublethal concentrations of the bile salt sodium deoxycholate (DOC) adapt Salmonella to survive lethal concentrations of bile. Adaptation seems to be associated to multiple changes in gene expression, which include upregulation of the RpoS-dependent general stress response and other stress responses. The crucial role of the general stress response in adaptation to bile is supported by the observation that RpoS− mutants are bile-sensitive. While adaptation to bile involves a response by the bacterial population, individual cells can become bile-resistant without adaptation: plating of a non-adapted S. enterica culture on medium containing a lethal concentration of bile yields bile-resistant colonies at frequencies between 10−6 and 10−7 per cell and generation. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. A fraction of such isolates are stable, indicating that bile resistance can be acquired by mutation. Full genome sequencing of bile-resistant mutants shows that alteration of the lipopolysaccharide transport machinery is a frequent cause of mutational bile resistance. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. We propose that such isolates derive from rare cells whose physiological state permitted survival upon encountering bile. This view is supported by single cell analysis of gene expression using a microscope fluidic system: batch cultures of Salmonella contain cells that activate stress response genes in the absence of DOC. This phenomenon underscores the existence of phenotypic heterogeneity in clonal populations of bacteria and may illustrate the adaptive value of gene expression fluctuations

    A genome-wide association study suggests that a locus within the ataxin 2 binding protein 1 gene is associated with hand osteoarthritis: the Treat-OA consortium

    Get PDF
    To identify the susceptibility gene in hand osteoarthritis (OA) the authors used a two-stage approach genome-wide association study using two discovery samples (the TwinsUK cohort and the Rotterdam discovery subset; a total of 1804 subjects) and four replication samples (the Chingford Study, the Chuvasha Skeletal Aging Study, the Rotterdam replication subset and the Genetics, Arthrosis, and Progression (GARP) Study; a total of 3266 people). Five single-nucleotide polymorphisms (SNPs) had a likelihood of association with hand OA in the discovery stage and one of them (rs716508), was successfully confirmed in the replication stage (meta-analysis p = 1.81×10−5). The C allele conferred a reduced risk of 33% to 41% using a case–control definition. The SNP is located in intron 1 of the A2BP1 gene. This study also found that the same allele of the SNP significantly reduced bone density at both the hip and spine (p<0.01), suggesting the potential mechanism of the gene in hand OA might be via effects on subchondral bone. The authors' findings provide a potential new insight into genetic mechanisms in the development of hand OA

    Crystal Structure of PrgI-SipD: Insight into a Secretion Competent State of the Type Three Secretion System Needle Tip and its Interaction with Host Ligands

    Get PDF
    Many infectious Gram-negative bacteria, including Salmonella typhimurium, require a Type Three Secretion System (T3SS) to translocate virulence factors into host cells. The T3SS consists of a membrane protein complex and an extracellular needle together that form a continuous channel. Regulated secretion of virulence factors requires the presence of SipD at the T3SS needle tip in S. typhimurium. Here we report three-dimensional structures of individual SipD, SipD in fusion with the needle subunit PrgI, and of SipD:PrgI in complex with the bile salt, deoxycholate. Assembly of the complex involves major conformational changes in both SipD and PrgI. This rearrangement is mediated via a π bulge in the central SipD helix and is stabilized by conserved amino acids that may allow for specificity in the assembly and composition of the tip proteins. Five copies each of the needle subunit PrgI and SipD form the T3SS needle tip complex. Using surface plasmon resonance spectroscopy and crystal structure analysis we found that the T3SS needle tip complex binds deoxycholate with micromolar affinity via a cleft formed at the SipD:PrgI interface. In the structure-based three-dimensional model of the T3SS needle tip, the bound deoxycholate faces the host membrane. Recently, binding of SipD with bile salts present in the gut was shown to impede bacterial infection. Binding of bile salts to the SipD:PrgI interface in this particular arrangement may thus inhibit the T3SS function. The structures presented in this study provide insight into the open state of the T3SS needle tip. Our findings present the atomic details of the T3SS arrangement occurring at the pathogen-host interface

    Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements

    Get PDF
    The Sr/Ca ratio of coral aragonite is used to reconstruct past sea surface temperature (SST). Twentyone laboratories took part in an interlaboratory study of coral Sr/Ca measurements. Results show interlaboratory bias can be significant, and in the extreme case could result in a range in SST estimates of 7°C. However, most of the data fall within a narrower range and the Porites coral reference material JCp- 1 is now characterized well enough to have a certified Sr/Ca value of 8.838 mmol/mol with an expanded uncertainty of 0.089 mmol/mol following International Association of Geoanalysts (IAG) guidelines. This uncertainty, at the 95% confidence level, equates to 1.5°C for SST estimates using Porites, so is approaching fitness for purpose. The comparable median within laboratory error is <0.5°C. This difference in uncertainties illustrates the interlaboratory bias component that should be reduced through the use of reference materials like the JCp-1. There are many potential sources contributing to biases in comparative methods but traces of Sr in Ca standards and uncertainties in reference solution composition can account for half of the combined uncertainty. Consensus values that fulfil the requirements to be certified values were also obtained for Mg/Ca in JCp-1 and for Sr/Ca and Mg/Ca ratios in the JCt-1 giant clam reference material. Reference values with variable fitness for purpose have also been obtained for Li/Ca, B/Ca, Ba/Ca, and U/Ca in both reference materials. In future, studies reporting coral element/Ca data should also report the average value obtained for a reference material such as the JCp-1

    The N-terminus of IpaB provides a potential anchor to the Shigella type III secretion system tip complex protein IpaD

    Get PDF
    The type III secretion system (T3SS) is an essential virulence factor for Shigella flexneri, providing a conduit through which host-altering effectors are injected directly into a host cell to promote uptake. The type III secretion apparatus (T3SA) is comprised of a basal body, external needle, and regulatory tip complex. The nascent needle is a polymer of MxiH capped by a pentamer of invasion plasmid antigen D (IpaD). Exposure to bile salts (e.g. deoxycholate) causes a conformational change in IpaD and promotes recruitment of IpaB to the needle tip. It has been proposed that IpaB senses contact with host cell membranes, recruiting IpaC and inducing full secretion of T3SS effectors. While the steps of T3SA maturation and their external triggers have been identified, details of specific protein interactions and mechanisms have remained difficult to study due to the hydrophobic nature of the IpaB and IpaC translocator proteins. Here we explored the ability for a series of soluble N-terminal IpaB peptides to interact with IpaD. We found that DOC is required for the interaction and that a region of IpaB between residues 11–27 is required for maximum binding, which was confirmed in vivo. Furthermore, intramolecular FRET measurements indicated that movement of the IpaD distal domain away from the protein core accompanied the binding of IpaB11-226. Together these new findings provide important new insight into the interactions and potential mechanisms that define the maturation of the Shigella T3SA needle tip complex and provide a foundation for further studies probing T3SS activation
    • 

    corecore