132 research outputs found

    Phase-encoded duobinary transmission over non-dispersion shifted fibre links employing chirped grating dispersion compensators

    No full text
    High-bit-rate (10Gbit/s, 1.55µm) phase-encoded duobinary transmission over non-dispersion shifted fibre links employing chirped grating dispersion compensators is analysed. A reduced sensitivity to optical nonlinearities allows increased transmission powers and thus distance, 1700km compared to 1000km for the conventional NRZ-format. In addition for typical links around 700km an increased dispersion margin is observed, equivalent to ±60km compared with ±25km for the NRZ format

    Cornerstones of Sampling of Operator Theory

    Full text link
    This paper reviews some results on the identifiability of classes of operators whose Kohn-Nirenberg symbols are band-limited (called band-limited operators), which we refer to as sampling of operators. We trace the motivation and history of the subject back to the original work of the third-named author in the late 1950s and early 1960s, and to the innovations in spread-spectrum communications that preceded that work. We give a brief overview of the NOMAC (Noise Modulation and Correlation) and Rake receivers, which were early implementations of spread-spectrum multi-path wireless communication systems. We examine in detail the original proof of the third-named author characterizing identifiability of channels in terms of the maximum time and Doppler spread of the channel, and do the same for the subsequent generalization of that work by Bello. The mathematical limitations inherent in the proofs of Bello and the third author are removed by using mathematical tools unavailable at the time. We survey more recent advances in sampling of operators and discuss the implications of the use of periodically-weighted delta-trains as identifiers for operator classes that satisfy Bello's criterion for identifiability, leading to new insights into the theory of finite-dimensional Gabor systems. We present novel results on operator sampling in higher dimensions, and review implications and generalizations of the results to stochastic operators, MIMO systems, and operators with unknown spreading domains

    OPTIma:a tracking solution for proton computed tomography in high proton flux environments

    Get PDF
    Currently there is a large discrepancy between the currents that are used for treatments in proton beam therapy facilities and the ultra low beam currents required for many proton CT imaging systems. Here we provide details of the OPTIma silicon strip based tracking system, which has been designed for performing proton CT imaging in conditions closer to the high proton flux environments of modern spot scanning treatment facilities. Details on the physical design, sensor testing, modelling, and track reconstruction are provided along with Monte-Carlo simulation studies of the expected performance for proton beam currents of up to 50 pA at the nozzle when using a σ = ∼10 mm spot scanning cyclotron system. Using a detailed simulation of the proposed OPTIma system, a discrepancy of less than 1% on the Relative Stopping Power is found for various tissues when embedded within a 150 mm diameter Perspex sphere. It is found that by accepting up to 7 protons per bunch it is possible to operate at cyclotron beam currents up to 5 times higher than would be possible with a single proton based readout, significantly reducing the total beam time required to produce an image, while also reducing the discrepancy between the beam currents required for treatment and those used for proton CT

    Engine oil acidity detection using solid state ion selective electrodes

    Full text link
    Initial results from oil acidity measurements using thick film electrodes are presented. The results suggest that as the oil degrades, its pH/acidity follows a specific trend. Furthermore, an investigation into the feasibility of detecting changes in oil acidity (i.e. TAN value) using ion selective electrodes fabricated utilising thick film technology is presented. The thick-film (screen printing) technique is a decent means for the mass production of rugged, compact and disposable sensors as many such devices can be printed at the same time making them very cost effective to manufacture. Thick-Film ion selective and reference electrodes were fabricated, calibrated and tested in different oil samples varying its acidity. Ruthenium oxide (RuO2) pH sensitive electrodes were screen printed and were used against silver/silver chloride (Ag/AgCl) reference electrodes as well as a commercial glass Ag/AgCl reference electrode. The potentiometric sets of electrodes were calibrated in pH 4, 7 and 10 buffers in a cyclic manner and the voltage was recorded using a high input impedance voltmete

    Customer emotions in service failure and recovery encounters

    Get PDF
    Emotions play a significant role in the workplace, and considerable attention has been given to the study of employee emotions. Customers also play a central function in organizations, but much less is known about customer emotions. This chapter reviews the growing literature on customer emotions in employee–customer interfaces with a focus on service failure and recovery encounters, where emotions are heightened. It highlights emerging themes and key findings, addresses the measurement, modeling, and management of customer emotions, and identifies future research streams. Attention is given to emotional contagion, relationships between affective and cognitive processes, customer anger, customer rage, and individual differences

    Genome-wide interaction study of a proxy for stress-sensitivity and its prediction of major depressive disorder

    Get PDF
    Individual response to stress is correlated with neuroticism and is an important predictor of both neuroticism and the onset of major depressive disorder (MDD). Identification of the genetics underpinning individual differences in response to negative events (stress-sensitivity) may improve our understanding of the molecular pathways involved, and its association with stress-related illnesses. We sought to generate a proxy for stress-sensitivity through modelling the interaction between SNP allele and MDD status on neuroticism score in order to identify genetic variants that contribute to the higher neuroticism seen in individuals with a lifetime diagnosis of depression compared to unaffected individuals. Meta-analysis of genome-wide interaction studies (GWIS) in UK Biobank (N = 23,092) and Generation Scotland: Scottish Family Health Study (N = 7,155) identified no genome-wide significance SNP interactions. However, gene-based tests identified a genome-wide significant gene, ZNF366, a negative regulator of glucocorticoid receptor function implicated in alcohol dependence (p = 1.48x10-7; Bonferroni-corrected significance threshold p < 2.79x10-6). Using summary statistics from the stress-sensitivity term of the GWIS, SNP heritability for stress-sensitivity was estimated at 5.0%. In models fitting polygenic risk scores of both MDD and neuroticism derived from independent GWAS, we show that polygenic risk scores derived from the UK Biobank stress-sensitivity GWIS significantly improved the prediction of MDD in Generation Scotland. This study may improve interpretation of larger genome-wide association studies of MDD and other stress-related illnesses, and the understanding of the etiological mechanisms underpinning stress-sensitivity

    Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel

    Get PDF
    Dark matter lighter than 10  GeV/c2 encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino fog for GeV-scale masses and significant sensitivity down to 10  MeV/c2 considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector’s sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe
    corecore