11 research outputs found

    Amplikoni põhine metsamuldade bakterikoosluse analüüs

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneMuldade rikkalike mikroobikoosluste uurimist on siiani palju takistanud tõsiasi, et enamik mulla mikroobe on kultiveerimatud. Seda kitsaskohta aitab leevendada lähenemine nimega metagenoomika, mis tähistab uurimistööd otse keskkonnaproovidest eraldatud geneetilise materjaliga. Selliste andmete kasutamiseks on levinud meetodid, mille abil grupeeritakse (klasterdatakse) kogutud DNA järjestused ad-hoc taksonoomilistesse üksustesse nn. OTU-desse (Operational Taxonomic Unit). Nii võib OTU-desse klasterdatud järjestusi kasutades hinnata bakterikoosluste mitmekesisust ja liigilist koostist. Saadud OTU-de arvukuse numbreid annab kasutada mitmesugustes erinevates analüüsides kui asendajaid tavapärasematele taksonoomilistele üksustele. Niisama kiire, kui on olnud uute sekveneerimistehnoloogiate areng, on ka olnud uute tööriistade arvu kasv – viimase kümnendi jooksul on loodud hulk programme, mis on mõeldud eelpoolmainitud OTU-de moodustamiseks DNA järjestuste andmetest. Antud doktoritöö töö keskendub sellele, kuidas mõjutavad erinevad OTU loomise meetodid edasisi analüüse ning järeldusi. Selleks kasutati järjestusandmeid artiklist “Bacterial community structure and its relationship to soil physico-chemical characteristics in alder stands with different management histories” ning erinevaid OTU klasterdamise meetodeid. OTU-d loodi erinevate programmide abil (Mothur,CROP,UCLUST,Swarm) – seejärel viidi läbi koosluste mitmesugused statistilised analüüsid. OTU andmete analüüs andis üldjoontes samasuguseid tulemusi. Seda visualiseerivad hästi töös olevad joonised. OTU arvude ja mitmekesisusindeksi statistilised testid ei leidnud statistiliselt olulist erinevust eri klasterdusmeetodite vahel. Kasutatud klasterdamismeetoditest jäid parimaina silma paistma CROP ja UCLUST meetodid.Lisaks näitasid analüüsid ka osade statistiliste meetodite eeliseid teiste ees sedasorti OTU andmete käsitlemiselThe soil as a central agent in many ecological processes has received a lot of research attention from many different angles. The investigation of the rich microbiome of the soil has been slowed by the fact that most of the microbes are unculturable. This gap can be filled by the metagenomics which is a field that deals with genetic material directly acquired form environmental samples. The analysis of 16S rDNA data usually begins with the construction of operational taxonomicunits (OTUs): clusters of reads that differ by less than a fixed sequence dissimilarity threshold. Consequently, the obtained sample-by-OTU abundance table serves as the basis for further statistical and exploratory analysis. During the last decade, a plethora of tools based on different principles and having different computational requirements to perform aforementioned OTU clustering has been created. This work we take an interest in the differences of the final outcome of series of analyses when different OTU clustering methods are used and also have a comparision of these methods. We used the dataset published in “Bacterial community structure and its relationship to soil physico-chemical characteristics in alder stands with different management histories” and analysed it using different software packages for processing bioinformatics data: Mothur UCLUST, CROP, Swarm. The results of analyses were on the whole quite similar and comparable.The differences between OTU numbers and diversity indeces were statistically not significant. The CROP and UCLUST methods stood out by their quality and useability. The work also showed the practicality of robust statistical methods when working with OTU data

    The bacterial community structure and functional profile in the heavy metal contaminated paddy soils, surrounding a nonferrous smelter in South Korea

    Get PDF
    Funding Information: The authors wish to thank the Basic Science Research Program of the National Research Foundation (NRF) under the Ministry of Education, Science and Technology (2015R1A2A1A05001885), South Korea for providing funding support toward the completion of this study. This study was supported partially by the Estonian Ministry of Education and Research (Grant IUT2–16), and by the European Regional Development Fund through the Centre of Excellence EcolChange. We thank Saale Truu for the assistance in computer graphics. Funding Information: National Research Foundation of Korea, Grant/Award Number: 2015R1A2A1A05001885; Estonian Ministry of Education and Research, Grant/ Award Number: IUT2–16; European Region Development Fund Publisher Copyright: © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.Peer reviewedPublisher PD

    Dynamics of Bacterial Community Abundance and Structure in Horizontal Subsurface Flow Wetland Mesocosms Treating Municipal Wastewater

    No full text
    Dynamics of bacterial community abundance and structure of a newly established horizontal subsurface flow (HSSF) pilot-scale wetland were studied using high-throughput sequencing and quantitative polymerase chain reaction (PCR) methods. Bacterial community abundance increased rapidly within one month and stabilised thereafter in three replicate HSSF constructed wetland (CW) mesocosms. The most dominant phylum was Proteobacteria, followed by Bacteroidetes in wetland media biofilms and Firmicutes in influent wastewater. CW bacterial community diversity increased over time and was positively related to the wastewater treatment efficiency. Increase in the abundance of total bacteria in the community was accompanied with the abundance of denitrifying bacteria that promoted nitrate and nitrite removal from the wastewater. During the 150-day study period, similar patterns of bacterial community successions were observed in replicate HSSF CW mesocosms. The data indicate that successions in the bacterial community in HSSF CW are shaped by biotic interactions, with a significant contribution made by external abiotic factors such as influent chemical parameters. Network analysis of the bacterial community revealed that organic matter and nitrogen removal in HSSF CW could be, in large part, allocated to a small subset of tightly interconnected bacterial species. The diversity of bacterial community and abundance of denitrifiers were good predictors of the removal efficiency of ammonia, nitrate and total organic C in HSSF CW mesocosms, while the removal of the seven-day biochemical oxygen demand (BOD7) was best predicted by the abundance of a small set of bacterial phylotypes. The results suggest that nitrogen removal in HSSF CW consist of two main pathways. The first is heterotrophic nitrification, which is coupled with aerobic denitrification and mediated by mixotrophic nitrite-oxidizers. The second pathway is anaerobic denitrification, which leads to gaseous intermediates and loss of nitrogen as N2

    Data from: The bacterial community structure and functional profile in the heavy metal contaminated paddy soils,surrounding a nonferrous smelter in South Korea

    No full text
    The pollution of agricultural soils by the heavy metals affects the productivity of the land and has an impact on the quality of the surrounding ecosystems. The present study investigated the bacterial community structure in the heavy metal contaminated sites along a smelter and a distantly located paddy field to elucidate the factors that are related to the alterations of the bacterial communities under the conditions of heavy metal pollution. Among the study sites, the bacterial communities in the soil did not show any significant differences in their richness and diversity. The soil bacterial communities at the three study sites were distinct from one another at each site, possessing a distinct set of bacterial phylotypes. Among the study sites, significant changes were observed in the abundances of the bacterial phyla and genera. The variations in the bacterial community structure were mostly related to the general soil properties at the phylum level, while at the finer taxonomic levels, the concentrations of arsenic (As) and lead (Pb) were the significant factors, affecting the community structure. The relative abundances of the genera Desulfatibacillum and Desulfovirga were negatively correlated to the concentrations of As, Pb, and cadmium (Cd) in the soil, while the genus Bacillus was positively correlated to the concentrations of As and Cd. According to the results of the prediction of bacterial community functions, the soil bacterial communities of the heavy metal polluted sites were characterized by the more abundant enzymes, involved in DNA replication and repair, translation, transcription, and the nucleotide metabolism pathways, while the amino acid and lipid metabolism, as well as the biodegradation potential of xenobiotics, were reduced. Our results showed that the adaptation of the bacterial communities to the heavy metal contamination was predominantly attributed to the replacement process, while the changes in community richness were linked to the variations in the soil pH values

    Impact of polyols on oral microbiome of Estonian schoolchildren

    Get PDF
    Background - Oral microbiome has significant impact on both oral and general health. Polyols have been promoted as sugar substitutes in prevention of oral diseases. We aimed to reveal the effect of candies containing erythritol, xylitol or control (sorbitol) on salivary microbiome. Methods - Ninety children (11.3 ± 0.6 years) consumed candies during 3 years. Microbial communities were profiled using Illumina HiSeq 2000 sequencing and real-time PCR. Results - The dominant phyla in saliva were Firmicutes (39.1%), Proteobacteria (26.1%), Bacteroidetes (14.7%), Actinobacteria (12%) and Fusobacteria (6%). The microbiome of erythritol group significantly differed from that of the other groups. Both erythritol and xylitol reduced the number of observed bacterial phylotypes in comparison to the control group. The relative abundance of the genera Veillonella, Streptococcus and Fusobacterium were higher while that of Bergeyella lower after erythritol intervention when comparing with control. The lowest prevalence of caries-related mutans streptococci corresponded with the lowest clinical caries markers in the erythritol group. Conclusions - Daily consumption of erythritol, xylitol or control candies has a specific influence on the salivary microbiome composition in schoolchildren. Erythritol is associated with the lowest prevalence of caries-related mutans streptococci and the lowest levels of clinical caries experience
    corecore