119 research outputs found

    Variability in fire frequency and forest composition in Canada's Southeastern Boreal Forest: A challenge for sustainable forest management

    Get PDF
    Because some consequences of fire resemble the effects of industrial forest harvesting, forest management is often considered as a disturbance having effects similar to those of natural disturbances. Although the analogy between forest management and fire disturbance in boreal ecosystems has some merit, it is important to recognize that it has limitations. First, normal forest rotations truncate the natural forest stand age distribution and eliminate over-mature forests from the landscape. Second, in the boreal mixedwoods, natural forest dynamics following fire may involve a gradual replacement of stands of intolerant broadleaf species by mixedwood and then softwood stands, whereas current silvicultural practices promote successive rotations of similarly composed stands. Third, the large fluctuations observed in fire frequency during the Holocene limit the use of a single fire cycle to characterize natural fire regimes. Short fire cycles generally described for boreal ecosystems do not appear to be universal; rather, shifts between short and long fire cycles have been observed. These shifts imply important changes in forest composition at the landscape and regional levels. All of these factors create a natural variability in forest composition that should be maintained by forest managers concerned with the conservation of biodiversity. One avenue is to develop silvicultural techniques that maintain a spectrum of forest compositions over the landscape

    An Operational Definition of a Statistically Meaningful Trend

    Get PDF
    Linear trend analysis of time series is standard procedure in many scientific disciplines. If the number of data is large, a trend may be statistically significant even if data are scattered far from the trend line. This study introduces and tests a quality criterion for time trends referred to as statistical meaningfulness, which is a stricter quality criterion for trends than high statistical significance. The time series is divided into intervals and interval mean values are calculated. Thereafter, r2 and p values are calculated from regressions concerning time and interval mean values. If r2≥0.65 at p≤0.05 in any of these regressions, then the trend is regarded as statistically meaningful. Out of ten investigated time series from different scientific disciplines, five displayed statistically meaningful trends. A Microsoft Excel application (add-in) was developed which can perform statistical meaningfulness tests and which may increase the operationality of the test. The presented method for distinguishing statistically meaningful trends should be reasonably uncomplicated for researchers with basic statistics skills and may thus be useful for determining which trends are worth analysing further, for instance with respect to causal factors. The method can also be used for determining which segments of a time trend may be particularly worthwhile to focus on

    Chapter 7: Wetlands

    Get PDF
    Contains fulltext : 205862.pdf (publisher's version ) (Open Access

    Acute Pain and a Motivational Pathway in Adult Rats: Influence of Early Life Pain Experience

    Get PDF
    The importance of neonatal experience upon behaviour in later life is increasingly recognised. The overlap between pain and reward pathways led us to hypothesise that neonatal pain experience influences reward-related pathways and behaviours in adulthood

    Connecting the Dots: Responses of Coastal Ecosystems to Changing Nutrient Concentrations

    Get PDF
    Empirical relationships between phytoplankton biomass and nutrient concentrations established across a wide range of different ecosystems constitute fundamental quantitative tools for predicting effects of nutrient management plans. Nutrient management plans based on such relationships, mostly established over trends of increasing rather than decreasing nutrient concentrations, assume full reversibility of coastal eutrophication. Monitoring data from 28 ecosystems located in four well-studied regions were analyzed to study the generality of chlorophyll a versus nutrient relationships and their applicability for ecosystem management. We demonstrate significant differences across regions as well as between specific coastal ecosystems within regions in the response of chlorophyll a to changing nitrogen concentrations. We also show that the chlorophyll a versus nitrogen relationships over time constitute convoluted trajectories rather than simple unique relationships. The ratio of chlorophyll a to total nitrogen almost doubled over the last 30-40 years across all regions. The uniformity of these trends, or shifting baselines, suggest they may result from large-scale changes, possibly associated with global climate change and increasing human stress on coastal ecosystems. Ecosystem management must, therefore, develop adaptation strategies to face shifting baselines and maintain ecosystem services at a sustainable level rather than striving to restore an ecosystem state of the past. © 2011 American Chemical Society.This research is a contribution to the Thresholds Integrated Project (contract FP6-003933-2) and WISER (contract FP7-226273), funded by the European Commission.Peer Reviewe

    Anthropogenic perturbation of the carbon fluxes from land to ocean

    Full text link
    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr-1) or sequestered in sediments (~0.5 Pg C yr-1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr-1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr-1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr-1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.Peer reviewe

    Direct and indirect metabolic CO<sub>2</sub> release by humanity

    No full text
    International audienceThe direct CO2 released by respiration of humans and domesticated animals, as well as CO2 derived from the decomposition of their resulting wastes was calculated in order to ascertain the direct and indirect metabolic contribution of humanity to CO2 release. Human respiration was estimated to release 0.6 Gt C year?1 and that of their associated domestic animals was estimated to release 1.5 Gt C year?1, to which an indirect release of 1.0 Gt C year?1, derived from decomposition of the organic waste and garbage produced by humans and their domestic animals, must be added. These combined direct and indirect metabolic sources, estimated at 3.1 Gt C year?1, have increased 7 fold since pre-industrial times and are predicted to continue to rise over the 21st century
    corecore