316 research outputs found

    Zero-Suppression Trigger Mode for GEM detector measurement system

    Get PDF
    A novel approach to a trigger mode in the GasElectron Multiplier (GEM) detector readout system is presented.The system is already installed at WEST tokamak. The articlebriefly describes the architecture of the GEM detector and themeasurement system. Currently the system can work in twotrigger modes: Global Trigger and Local Trigger. All trigger processingblocks are parts of the Charge Signal Sequencer modulewhich is responsible for transferring data to the PC. Therefore,the article presents structure of the Sequencer with details aboutbasic blocks, theirs functionality and output data configuration.The Sequencer with the trigger algorithms is implemented inan FPGA chip from Xilinx. Global Trigger, which is a defaultmode for the system, is not efficient and has limitations due tostoring much data without any information. Local trigger whichis under tests, removes data redundancy and is constructed tosend only valid data, but the rest of the software, especially on thePC side, is still under development. Therefore authors proposethe trigger mode which combines functionality of two existingmodes. The proposed trigger, called Zero Suppression Trigger, iscompatible with the existing interfaces of the PC software, butis also capable to verify and filter incoming signals and transferonly recognized events. The results of the implementation andsimulation are presented

    Soft X-ray diagnostic system upgrades and data quality monitoring features for tokamak usage

    Get PDF
    The validation of the measurements quality after on-site diagnostic system installation is necessary in order to provide reliable data and output results. This topic is often neglected or not discussed in detail regarding measurement systems. In the paper recently installed system for soft X-ray measurements is described in introduction. The system is based on multichannel GEM detector and the data is collected and sent in special format to PC unit for further postprocessing. The unique feature of the system is the ability to compute final data based on raw data only. The raw data is selected upon algorithms by FPGA units. The FPGAs are connected to the analog front-end of the system and able to register all of the signals and collect the useful data. The interface used for data streaming is PCIe Gen2 x4 for each FPGA, therefore high throughput of the system is ensured. The paper then discusses the properties of the installation environment of the system and basic functionality mode. New features are described, both in theoretical and practical approach. New modes correspond to the data quality monitoring features implemented for the system, that provide extra information to the postprocessing stage and final algorithms. In the article is described also additional mode to perform hardware simulation of signals in a tokamak-like environment using FPGAs. The summary describes the implemented features of the data quality monitoring features and additional modes of the system

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Performance of the CMS muon trigger system in proton-proton collisions at √s = 13 TeV

    Get PDF
    The muon trigger system of the CMS experiment uses a combination of hardware and software to identify events containing a muon. During Run 2 (covering 2015-2018) the LHC achieved instantaneous luminosities as high as 2 × 10 cm s while delivering proton-proton collisions at √s = 13 TeV. The challenge for the trigger system of the CMS experiment is to reduce the registered event rate from about 40 MHz to about 1 kHz. Significant improvements important for the success of the CMS physics program have been made to the muon trigger system via improved muon reconstruction and identification algorithms since the end of Run 1 and throughout the Run 2 data-taking period. The new algorithms maintain the acceptance of the muon triggers at the same or even lower rate throughout the data-taking period despite the increasing number of additional proton-proton interactions in each LHC bunch crossing. In this paper, the algorithms used in 2015 and 2016 and their improvements throughout 2017 and 2018 are described. Measurements of the CMS muon trigger performance for this data-taking period are presented, including efficiencies, transverse momentum resolution, trigger rates, and the purity of the selected muon sample. This paper focuses on the single- and double-muon triggers with the lowest sustainable transverse momentum thresholds used by CMS. The efficiency is measured in a transverse momentum range from 8 to several hundred GeV

    >

    No full text

    >

    No full text
    A concise overview of the laboratory solution of the FPGA based TESLA cavity simulator and controller (SIMCON) is presented. The major emphasis is put in this paper on the high level part of the system. There were described the following steps of the system design and realization: solution choice, design of system components, implementing the solutions, introduction of the application, initial analysis of the working application. The paper is a first description of the working DOOCS server for the FPGA based TESLA cavity SIMCON (which is a part of the LLRF subsystem). The data gathered from the work of the DOOCS server promise for the system optimization possibilities. The server will be supplemented with the GUI in the next step of this effort. Throughout the work we will refer to the debated system as to the TESLA SIMCON DOOCS server or in short the 'simcon server.' The hardware layer of the TESLA cavity SIMCON (to which the designed software refers to) was realized in a single FPGA Virtex chip by Xilinx (XC2V3000 development board by Nallatech)
    corecore