50 research outputs found

    Exploiting the Yeast L-A Viral Capsid for the In Vivo Assembly of Chimeric VLPs as Platform in Vaccine Development and Foreign Protein Expression

    Get PDF
    A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae) dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs) as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8(+) memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i) a heterologous model protein (GFP), (ii) a per se toxic protein (K28 α-subunit), and (iii) a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A). Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production

    Effects of bioturbation in oxic and hypoxic conditions: a microcosm experiment with a North Sea sediment community

    Get PDF
    Sediment cores of 20 cm diameter contaning the natural benthic fauna were subjected to low oxygen conditions in a laboratory microcosm system. After several days of oxic conditions ('oxic stage') the oxygen content of the water was reduced to 25% saturation for 15 d ('hypoxic stage'), followed by a 'reoxygenation stage'. Effective solute transport rates were calculated using measurements with the conservative tracer ion bromide. Profiles of oxygen and ÎŁCO2 were measured and molecular diffusive as well as effective fluxes, account mg for effective solute exchange, were calculated. The overall response of the benthic community was to compensate for low oxygen content of the overlying water by increased pumping activity. On average, effective diffusion coefficients (Den} were 3 times higher in hypoxia than under oxic conditions. D eff reached 1.5 x 10^-4 cm2 s^-1, a value 30 times that of molecular diffusion. During hypoxia we observed low molecular diffusive O2 flux, higher effective O2 flux, as well as an increase in ÎŁCO2 within the sediment. We interpret this as a shift of transport away from diffusion within the bulk sediment interstices (oxic conditions) to the advective transport pathways along burrows during hypoxia. This facilitates fast transport of oxygen and bromide along burrows and contrasts with the slower transport of CO2 from the interstices governed by molecular diffusion. In this transient situation calulations based on gradients result in an unrealistic molar ratio of fluxes(CO2/O2)as high as 11

    Continuous and High Transport of Particles and Solutes by Benthos in Coastal Eutrophic Sediments of the Pomeranian Bay

    Get PDF
    We present results on bioirrigation and reworking of sediments by benthic macrofauna in sediments of the Pomeranian Bay (southern Baltic Sea), that were obtained ∌22 years ago. The investigation took place at four stations ranging from 9 to 19 m water depth, which we observed between 1993 and 1995 over the course of 30 months. In order to assess exchange of solutes across and particles from the sediment–water interface with the underlying sediments, we used bromide as ex situ tracer for bioirrigation and chlorophyll a equivalents as in situ tracer for particle reworking. Using models to interpret tracer distributions in the sediment, we compare the magnitudes of small scale, diffusion-like, versus relatively large-scale, non-local, transport modes. Our results indicate a spatial differentiation of the bay: the coastal station most heavily impacted by eutrophication close to the Oder River mouth showed medium reworking and intense bioirrigation combined with lower chlorophyll concentrations throughout the sediment. This contrasts with high surface pigment concentrations at the shallow Oder Bank station, indicating benthic primary production and intense particle mixing. Medium local particle reworking at the northwestern station and medium mean solute transport rates characterized the two deeper stations in the northern Bay. The bromide tracer experiments, which exclusively depict animal activity, showed significant biological solute transport to ∌10 cm sediment depth within 3 days. Non-biological transport mechanisms in the field (resuspension, fishing activity, and pore water advection) might additionally affect the in situ tracer chlorophyll a – depth distributions. This tracer, too, indicates mixing within the uppermost 10 cm of the sediment within ∌2–3 months. In general, experimentally obtained solute transport constants were higher than most values reported previously (surface α: 155 year-1) and particle reworking was at the high end of reported values as well. Thus, benthic fauna is responsible for an intense bioturbation in Pomeranian Bay. Specifically, high bioirrigation rates were associated with high density and biomass of deep burrowing polychaetes. Recently published rates of particle reworking in the same area are on the same order of magnitude as ours obtained two decades ago. This finding is consistent with the species composition which generally remained the same

    Der Nachweis eines Radikalketten-Mechanismus fĂŒr die Knabe-Reaktion von 1,2-Dihydro-2-methylpapaverin

    Get PDF
    Die Knabe-Reaktion von 1,2-Dihydro-2-methylpapaverin (9) und die begleitende Eliminierungsreaktion wurden durch ihre gebrochene Reaktionsordnung und durch die Möglichkeit der Inhibition als Radikalkettenreaktionen erkannt, deren kettentragendes Radikal das 3,4-Dimethoxybenzylradikal ist. Die Synthese von N-Methylpavin (19) aus 1,2-Dihydro-2-methylpapaverin (9) ist an die Anwesenheit von AmeisensÀure als Inhibitor der Radikalketten gebunden. Durch Zusatz von Inhibitoren können nun Immoniumionen 10 und analoge Verbindungen stabilisiert und ihre Chemie untersucht werden

    Exacerbated leishmaniasis caused by a viral endosymbiont can be prevented by immunization with Its viral capsid

    Get PDF
    Recent studies have shown that a cytoplasmic virus called Leishmaniavirus (LRV) is present in some Leishmania species and acts as a potent innate immunogen, aggravating lesional inflammation and development in mice. In humans, the presence of LRV in Leishmania guyanensis and in L. braziliensis was significantly correlated with poor treatment response and symptomatic relapse. So far, no clinical effort has used LRV for prophylactic purposes. In this context, we designed an original vaccine strategy that targeted LRV nested in Leishmania parasites to prevent virus-related complications. To this end, C57BL/6 mice were immunized with a recombinant LRV1 Leishmania guyanensis viral capsid polypeptide formulated with a T helper 1-polarizing adjuvant. LRV1-vaccinated mice had significant reduction in lesion size and parasite load when subsequently challenged with LRV1+ Leishmania guyanensis parasites. The protection conferred by this immunization could be reproduced in naĂŻve mice via T-cell transfer from vaccinated mice but not by serum transfer. The induction of LRV1 specific T cells secreting IFN-Îł was confirmed in vaccinated mice and provided strong evidence that LRV1-specific protection arose via a cell mediated immune response against the LRV1 capsid. Our studies suggest that immunization with LRV1 capsid could be of a preventive benefit in mitigating the elevated pathology associated with LRV1 bearing Leishmania infections and possibly avoiding symptomatic relapses after an initial treatment. This novel anti-endosymbiotic vaccine strategy could be exploited to control other infectious diseases, as similar viral infections are largely prevalent across pathogenic pathogens and could consequently open new vaccine opportunities

    Sediment reworking by the burrowing polychaete Hediste diversicolor modulated by environmental and biological factors across the temperate North Atlantic. A tribute to Gaston Desrosiers

    Get PDF
    International audienceParticle mixing and irrigation of the seabed by benthic fauna (bioturbation) have major impacts on ecosystem functions such as remineralization of organic matter and sediment-water exchange. As a tribute to Prof. Gaston Desrosiers by the Nereis Park association, eighteen laboratories carried out a collaborative experiment to acquire a global snapshot of particle reworking by the polychaete Hediste diversicolor at 16 sites surrounding the Northern Atlantic. Organisms and soft sediments were collected during May – July at different geographical locations and, using a common laboratory protocol, particulate fluorescent tracers (‘luminophores’) were used to quantify particle transport over a 10-day period. Particle mixing was quantified using the maximum penetration depth of tracers (MPD), particle diffusive coefficients (Db), and non-local transport coefficients (r). Non-local coefficients (reflecting centimeter scale transport steps) ranged from 0.4 to 15 yr−1, and were not correlated across sites with any measured biological (biomass, biovolume) or environmental parameters (temperature, grain size, organic matter). Maximum penetration depths (MPD) averaged ~10.7 cm (6.5–14.5 cm), and were similar to the global average bioturbation depth inferred from short-lived radiochemical tracers. MPD was also not correlated with measures of size (individual biomass), but increased with grain size and decreased with temperature. Biodiffusion (Db) correlated inversely with individual biomass (size) and directly with temperature over the environmental range (Q10 ~ 1.7; 5–21 °C). The transport data were comparable in magnitude to rates reported for localized H. diversicolor populations of similar size, and confirmed some but not all correlations between sediment reworking and biological and environmental variables found in previous studies. The results imply that measures of particle reworking activities of a species from a single location can be generally extrapolated to different populations at similar conditions

    Wirbelschleppen-Simulation

    No full text
    corecore