150 research outputs found
What is a β cell? - Chapter I in the Human Islet Research Network (HIRN) review series
BACKGROUND: The pancreatic β cell, as the sole source of the vital hormone insulin, has been under intensive study for more than a century. Given the potential of newly created insulin-producing cells as a treatment or even cure of type 1 diabetes (T1D) and possibly in severe cases of type 2 diabetes (T2D), multiple academic and commercial laboratories are working to derive surrogate glucose-responsive, insulin-producing cells. SCOPE OF REVIEW: The recent development of advanced phenotyping technologies, including molecular, epigenomic, histological, or functional, have greatly improved our understanding of the critical properties of human β cells. Using this information, here we summarize the salient features of normal, fully functional adult human β cells, and propose minimal criteria for what should rightfully be termed 'β cells' as opposed to insulin-producing but not fully-functional surrogates that we propose should be referred to as 'β-like' cells or insulin-producing cells. MAJOR CONCLUSIONS: Clear criteria can be established to differentiate fully functional, mature β cells from 'β-like' surrogates. In addition, we outline important knowledge gaps that must be addressed to enable a greater understanding of the β cell
Which patellofemoral joint imaging features are associated with patellofemoral pain? Systematic review and meta-analysis
Objectives: To review the association between patellofemoral joint (PFJ) imaging features and patellofemoral pain (PFP). Design: A systematic review of the literature from AMED, CiNAHL, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, PEDro, EMBASE and SPORTDiscus was undertaken from their inception to September 2014. Studies were eligible if they used magnetic resonance imaging (MRI), computed tomography (CT), ultrasound (US) or x-ray (XR) to compare PFJ features between a PFP group and an asymptomatic control group in people < 45 years of age. A pooled meta-analysis was conducted and data was interpreted using a best evidence synthesis. Results: Forty studies (all moderate to high quality) describing 1,043 people with PFP and 839 controls were included. Two features were deemed to have a large standardised mean difference (SMD) based on meta-analysis: an increased MRI bisect offset at 0° knee flexion under load (0.99; 95% CI: 0.49, 1.49) and an increased CT congruence angle at 15° knee flexion, both under load (1.40 95% CI: 0.04, 2.76) and without load (1.24; 95% CI: 0.37,2.12). A medium SMD was identified for MRI patella tilt and patellofemoral contact area. Limited evidence was found to support the association of other imaging features with PFP. A sensitivity analysis showed an increase in the SMD for patella bisect offset at 0° knee flexion (1.91; 95% CI: 1.31,2.52) and patella tilt at 0° knee flexion (0.99; 95% CI: 0.47,1.52) under full weight bearing. Conclusion: Certain PFJ imaging features were associated with PFP. Future interventional strategies may be targeted at these features
Directly converted astrocytes retain the ageing features of the donor fibroblasts and elucidate the astrocytic contribution to human CNS health and disease
Astrocytes are highly specialised cells, responsible for CNS homeostasis and neuronal activity. Lack of human in vitro systems able to recapitulate the functional changes affecting astrocytes during ageing represents a major limitation to studying mechanisms and potential therapies aiming to preserve neuronal health. Here, we show that induced astrocytes from fibroblasts donors in their childhood or adulthood display age‐related transcriptional differences and functionally diverge in a spectrum of age‐associated features, such as altered nuclear compartmentalisation, nucleocytoplasmic shuttling properties, oxidative stress response and DNA damage response. Remarkably, we also show an age‐related differential response of induced neural progenitor cells derived astrocytes (iNPC‐As) in their ability to support neurons in co‐culture upon pro‐inflammatory stimuli. These results show that iNPC‐As are a renewable, readily available resource of human glia that retain the age‐related features of the donor fibroblasts, making them a unique and valuable model to interrogate human astrocyte function over time in human CNS health and disease
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Ginseng administration protects skeletal muscle from oxidative stress induced by acute exercise in rats
Enzymatic activity was analyzed in the soleus, gastrocnemius (red and white) and plantaris muscles of acutely exercised rats after long-term administration of Panax ginseng extract in order to evaluate the protective role of ginseng against skeletal muscle oxidation. Ginseng extract (3, 10, 100, or 500 mg/kg) was administered orally for three months to male Wistar rats weighing 200 ± 50 g before exercise and to non-exercised rats (N = 8/group). The results showed a membrane stabilizing capacity of the extract since mitochondrial function measured on the basis of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities was reduced, on average, by 20% (P < 0.05) after exercise but the activities remained unchanged in animals treated with a ginseng dose of 100 mg/kg. Glutathione status did not show significant changes after exercise or treatment. Lipid peroxidation, measured on the basis of malondialdehyde levels, was significantly higher in all muscles after exercise, and again was reduced by about 74% (P < 0.05) by the use of ginseng extract. The administration of ginseng extract was able to protect muscle from exercise-induced oxidative stress irrespective of fiber type
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic features associated with MYC and the PMN across the 33 cancers of The Cancer Genome Atlas. Pan-cancer, 28% of all samples had at least one of the MYC paralogs amplified. In contrast, the MYC antagonists MGA and MNT were the most frequently mutated or deleted members, proposing a role as tumor suppressors. MYC alterations were mutually exclusive with PIK3CA, PTEN, APC, or BRAF alterations, suggesting that MYC is a distinct oncogenic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such as immune response and growth factor signaling; chromatin, translation, and DNA replication/repair were conserved pan-cancer. This analysis reveals insights into MYC biology and is a reference for biomarkers and therapeutics for cancers with alterations of MYC or the PMN. We present a computational study determining the frequency and extent of alterations of the MYC network across the 33 human cancers of TCGA. These data, together with MYC, positively correlated pathways as well as mutually exclusive cancer genes, will be a resource for understanding MYC-driven cancers and designing of therapeutics
Genomic and Functional Approaches to Understanding Cancer Aneuploidy
Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm aneuploidy. Analyzing >10,000 human cancers, Taylor et al. show that aneuploidy is correlated with somatic mutation rate, expression of proliferation genes, and decreased leukocyte infiltration. Loss of chromosome arm 3p is common in squamous cancers, but deletion of chromosome 3p reduces cell proliferation in vitro
The Immune Landscape of Cancer
We performed an extensive immunogenomic anal-ysis of more than 10,000 tumors comprising 33diverse cancer types by utilizing data compiled byTCGA. Across cancer types, we identified six im-mune subtypes\u2014wound healing, IFN-gdominant,inflammatory, lymphocyte depleted, immunologi-cally quiet, and TGF-bdominant\u2014characterized bydifferences in macrophage or lymphocyte signa-tures, Th1:Th2 cell ratio, extent of intratumoral het-erogeneity, aneuploidy, extent of neoantigen load,overall cell proliferation, expression of immunomod-ulatory genes, and prognosis. Specific drivermutations correlated with lower (CTNNB1,NRAS,orIDH1) or higher (BRAF,TP53,orCASP8) leukocytelevels across all cancers. Multiple control modalitiesof the intracellular and extracellular networks (tran-scription, microRNAs, copy number, and epigeneticprocesses) were involved in tumor-immune cell inter-actions, both across and within immune subtypes.Our immunogenomics pipeline to characterize theseheterogeneous tumors and the resulting data areintended to serve as a resource for future targetedstudies to further advance the field
A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers
We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified subtypes with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molecular features, we identified five prognostic subtypes and developed a decision tree that classified patients into the subtypes based on just six features that are assessable in clinical laboratories. By performing molecular analyses of 2,579 TCGA gynecological (OV, UCEC, CESC, and UCS) and breast tumors, Berger et al. identify five prognostic subtypes using 16 key molecular features and propose a decision tree based on six clinically assessable features that classifies patients into the subtypes
- …