10 research outputs found

    Role of plant glyoxylate reductases during stress: a hypothesis

    Get PDF
    Molecular modelling suggests that a group of proteins in plants known as the β-hydroxyacid dehydrogenases, or the hydroxyisobutyrate dehydrogenase superfamily, includes enzymes that reduce succinic semialdehyde and glyoxylate to γ-hydroxybutyrate and glycolate respectively. Recent biochemical and expression studies reveal that NADPH-dependent cytosolic (termed GLYR1) and plastidial (termed GLYR2) isoforms of succinic semialdehyde/glyoxylate reductase exist in Arabidopsis. Succinic semialdehyde and glyoxylate are typically generated in leaves via two distinct metabolic pathways, γ-aminobutyrate and glycolate respectively. In the present review, it is proposed that the GLYRs function in the detoxification of both aldehydes during stress and contribute to redox balance. Outstanding questions are highlighted in a scheme for the subcellular organization of the detoxification mechanism in Arabidopsis

    Tween-20 activates and solubilizes the mitochondrial membrane-bound, calmodulin dependant NAD+ kinase of Avena sativa L.

    No full text
    International audienceAmong different treatments assayed, a mix of a nonionic detergent (5% Tween-20) with 0.5 m NaCl was found to solubilize a large part of the calmodulin-dependent NAD+ kinase bound to the inner mitochondrial membrane. It also stimulated its activity by increasing 7 times the maximal velocity. Activity stimulation was also observed with phosphatidylcholine, phosphatidylethanolamine and with reductants (HSO3 and DTT). This solubilized NAD+ kinase and the calmodulin-dependent cytosoluble isoform displayed distinct molecular masses, as well as different kinetic parameters. We propose that solubilization of membrane-bound NAD+ kinase could occur in vivo in Avena sativa and could generate a soluble isoform

    Hereditary optic neuropathies share a common mitochondrial coupling defect.

    No full text
    International audienceHereditary optic neuropathies are heterogeneous diseases characterized by the degeneration of retinal ganglion cells leading to optic nerve atrophy and impairment of central vision. We found a common coupling defect of oxidative phosphorylation in fibroblasts of patients affected by autosomal dominant optic atrophy (mutations of OPA1), autosomal dominant optic atrophy associated with cataract (mutations of OPA3), and Leber's hereditary optic neuropathy, a disorder associated with point mutations of mitochondrial DNA complex I genes. Interestingly, the energetic defect was significantly more pronounced in Leber's hereditary optic neuropathy and autosomal dominant optic atrophy patients with a more complex phenotype, the so-called plus phenotype
    corecore