300 research outputs found

    Diffusion in supersonic, turbulent, compressible flows

    Full text link
    We investigate diffusion in supersonic, turbulent, compressible flows. Supersonic turbulence can be characterized as network of interacting shocks. We consider flows with different rms Mach numbers and where energy necessary to maintain dynamical equilibrium is inserted at different spatial scales. We find that turbulent transport exhibits super-diffusive behavior due to induced bulk motions. In a comoving reference frame, however, diffusion behaves normal and can be described by mixing length theory extended into the supersonic regime.Comment: 11 pages, incl. 5 figures, accepted for publication in Physical Review E (a high-resolution version is available at http://www.aip.de./~ralf/Publications/p21.abstract.html

    The range and level of impurities in CO2 streams from different carbon capture sources

    Get PDF
    For CO2 capture and storage deployment, the impact of impurities in the gas or dense phase CO2 stream arising from fossil fuel power plants, or large scale industrial emitters, is of fundamental importance to the safe and economic transportation and storage of the captured CO2. This paper reviews the range and level of impurities expected from the main capture technologies used with fossil-fuelled power plants in addition to other CO2 emission-intensive industries. Analysis is presented with respect to the range of impurities present in CO2 streams captured using pre-combustion, post-combustion and oxy-fuel technologies, in addition to an assessment of the different parameters affecting the CO2 mixture composition. This includes modes of operation of the power plant, and different technologies for the reduction and removal of problematic components such as water and acid gases (SOx/NOx). A literature review of data demonstrates that the purity of CO2 product gases from carbon capture sources is highly dependent upon the type of technology used. This paper also addresses the CO2 purification technologies available for the removal of CO2 impurities from raw oxy-fuel flue gas, such as Hg and non-condensable compounds. CO2 purities of over 99% are achievable using post-combustion capture technologies with low levels of the main impurities of N2, Ar and O2. However, CO2 capture from oxy-fuel combustion and integrated gasification combined cycle power plants will need to take into consideration the removal of non-condensables, acid gas species, and other contaminants. The actual level of CO2 purity required will be dictated by a combination of transport and storage requirements, and process economics

    A Measurement of Psi(2S) Resonance Parameters

    Full text link
    Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been measured in the vicinity of the Psi(2S) resonance using the BESII detector operated at the BEPC. The Psi(2S) total width; partial widths to hadrons, pi+pi- J/Psi, muons; and corresponding branching fractions have been determined to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)= (2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)= (97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%, respectively.Comment: 8 pages, 6 figure

    Late Ebola virus relapse causing meningoencephalitis: a case report

    Get PDF
    Background: There are thousands of survivors of the 2014 Ebola outbreak in west Africa. Ebola virus can persist in survivors for months in immune-privileged sites; however, viral relapse causing life-threatening and potentially transmissible disease has not been described. We report a case of late relapse in a patient who had been treated for severe Ebola virus disease with high viral load (peak cycle threshold value 13·2). Methods: A 39-year-old female nurse from Scotland, who had assisted the humanitarian effort in Sierra Leone, had received intensive supportive treatment and experimental antiviral therapies, and had been discharged with undetectable Ebola virus RNA in peripheral blood. The patient was readmitted to hospital 9 months after discharge with symptoms of acute meningitis, and was found to have Ebola virus in cerebrospinal fluid (CSF). She was treated with supportive therapy and experimental antiviral drug GS-5734 (Gilead Sciences, San Francisco, Foster City, CA, USA). We monitored Ebola virus RNA in CSF and plasma, and sequenced the viral genome using an unbiased metagenomic approach. Findings: On admission, reverse transcriptase PCR identified Ebola virus RNA at a higher level in CSF (cycle threshold value 23·7) than plasma (31·3); infectious virus was only recovered from CSF. The patient developed progressive meningoencephalitis with cranial neuropathies and radiculopathy. Clinical recovery was associated with addition of high-dose corticosteroids during GS-5734 treatment. CSF Ebola virus RNA slowly declined and was undetectable following 14 days of treatment with GS-5734. Sequencing of plasma and CSF viral genome revealed only two non-coding changes compared with the original infecting virus. Interpretation: Our report shows that previously unanticipated, late, severe relapses of Ebola virus can occur, in this case in the CNS. This finding fundamentally redefines what is known about the natural history of Ebola virus infection. Vigilance should be maintained in the thousands of Ebola survivors for cases of relapsed infection. The potential for these cases to initiate new transmission chains is a serious public health concern

    Protocol for collection and separation of bone marrow mononuclear cells in Chlorocebus aethiops

    Full text link
    Abstract: Chlorocebus aethiops is a species of non-human primate frequently used in biomedical research. Some research involves this species as an experimental model for various diseases and possible treatment with stem cells. The bone marrow is one of the main sources of these cells and provides easy access. The aim of this study was to standardize the protocol of collection and separation of bone marrow in C. aethiops. Ten animals were submitted to puncture of bone marrow with access to the iliac crest and cell separation by density gradient. The bone marrow of C. aethiops had an average of 97% viability. From the results achieved, we can conclude that C. aethiops is an excellent model to obtain and isolate mononuclear cells from bone marrow, fostering several studies in the field of cell therapy

    Shell evolution approaching the N=20 island of inversion : Structure of 26Na

    Get PDF
    The levels in 26Na with single particle character have been observed for the first time using the d(25Na, pγ) reaction at 5 MeV/nucleon. The measured excitation energies and the deduced spectroscopic factors are in good overall agreement with (0+1)hω shell model calculations performed in a complete spsdfp basis and incorporating a reduction in the N=20 gap. Notably, the 1p3/2 neutron configuration was found to play an enhanced role in the structure of the low-lying negative parity states in 26Na, compared to the isotone 28Al. Thus, the lowering of the 1p3/2 orbital relative to the 0f7/2 occurring in the neighbouring Z=10 and 12 nuclei - 25,27Ne and 27,29Mg - is seen also to occur at Z=11 and further strengthens the constraints on the modelling of the transition into the island of inversion

    A new class of Roche lobe–filling hot subdwarf binaries

    Get PDF
    We present the discovery of the second binary with a Roche lobe–filling hot subdwarf transferring mass to a white dwarf (WD) companion. This 56 minute binary was discovered using data from the Zwicky Transient Facility. Spectroscopic observations reveal an He-sdOB star with an effective temperature of T eff = 33,700 ± 1000 K and a surface gravity of log(g) = 5.54 ± 0.11. The GTC+HiPERCAM light curve is dominated by the ellipsoidal deformation of the He-sdOB star and shows an eclipse of the He-sdOB by an accretion disk as well as a weak eclipse of the WD. We infer a He-sdOB mass of M sdOB = 0.41 ± 0.04 M ⊙ and a WD mass of M WD = 0.68 ± 0.05 M ⊙. The weak eclipses imply a WD blackbody temperature of 63,000 ± 10,000 K and a radius R WD = 0.0148 ± 0.0020 R ⊙ as expected for a WD of such high temperature. The He-sdOB star is likely undergoing hydrogen shell burning and will continue transferring mass for ≈1 Myr at a rate of 10−9 M ⊙ yr−1, which is consistent with the high WD temperature. The hot subdwarf will then turn into a WD and the system will merge in ≈30 Myr. We suggest that Galactic reddening could bias discoveries toward preferentially finding Roche lobe–filling systems during the short-lived shell-burning phase. Studies using reddening-corrected samples should reveal a large population of helium core–burning hot subdwarfs with T eff ≈ 25,000 K in binaries of 60–90 minutes with WDs. Though not yet in contact, these binaries would eventually come into contact through gravitational-wave emission and explode as a subluminous thermonuclear supernova or evolve into a massive single WD

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    The On-orbit Calibrations for the Fermi Large Area Telescope

    Full text link
    The Large Area Telescope (LAT) on--board the Fermi Gamma ray Space Telescope began its on--orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009.Comment: 60 pages, 34 figures, submitted to Astroparticle Physic
    • …
    corecore