105 research outputs found
A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students
Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students’ interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training
Comparative genomics of Cluster O mycobacteriophages
Mycobacteriophages - viruses of mycobacterial hosts - are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages - Corndog, Catdawg, Dylan, Firecracker, and YungJamal - designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange
A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students
Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students’ interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training
CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey
The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS)
is designed to document the first third of galactic evolution, over the
approximate redshift (z) range 8--1.5. It will image >250,000 distant galaxies
using three separate cameras on the Hubble Space Telescope, from the
mid-ultraviolet to the near-infrared, and will find and measure Type Ia
supernovae at z>1.5 to test their accuracy as standardizable candles for
cosmology. Five premier multi-wavelength sky regions are selected, each with
extensive ancillary data. The use of five widely separated fields mitigates
cosmic variance and yields statistically robust and complete samples of
galaxies down to a stellar mass of 10^9 M_\odot to z \approx 2, reaching the
knee of the ultraviolet luminosity function (UVLF) of galaxies to z \approx 8.
The survey covers approximately 800 arcmin^2 and is divided into two parts. The
CANDELS/Deep survey (5\sigma\ point-source limit H=27.7 mag) covers \sim 125
arcmin^2 within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and
three additional fields (EGS, COSMOS, and UDS) and covers the full area to a
5\sigma\ point-source limit of H \gtrsim 27.0 mag. Together with the Hubble
Ultra Deep Fields, the strategy creates a three-tiered "wedding cake" approach
that has proven efficient for extragalactic surveys. Data from the survey are
nonproprietary and are useful for a wide variety of science investigations. In
this paper, we describe the basic motivations for the survey, the CANDELS team
science goals and the resulting observational requirements, the field selection
and geometry, and the observing design. The Hubble data processing and products
are described in a companion paper.Comment: Submitted to Astrophysical Journal Supplement Series; Revised
version, subsequent to referee repor
CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey - The Hubble Space Telescope Observations, Imaging Data Products and Mosaics
This paper describes the Hubble Space Telescope imaging data products and
data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic
Legacy Survey (CANDELS). This survey is designed to document the evolution of
galaxies and black holes at , and to study Type Ia SNe beyond
. Five premier multi-wavelength sky regions are selected, each with
extensive multiwavelength observations. The primary CANDELS data consist of
imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and
UVIS channel, along with the Advanced Camera for Surveys (ACS). The
CANDELS/Deep survey covers \sim125 square arcminutes within GOODS-N and
GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a
total of \sim800 square arcminutes across GOODS and three additional fields
(EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as
motivated by the scientific goals and present a detailed description of the
data reduction procedures and products from the survey. Our data reduction
methods utilize the most up to date calibration files and image combination
procedures. We have paid special attention to correcting a range of
instrumental effects, including CTE degradation for ACS, removal of electronic
bias-striping present in ACS data after SM4, and persistence effects and other
artifacts in WFC3/IR. For each field, we release mosaics for individual epochs
and eventual mosaics containing data from all epochs combined, to facilitate
photometric variability studies and the deepest possible photometry. A more
detailed overview of the science goals and observational design of the survey
are presented in a companion paper.Comment: 39 pages, 25 figure
Recommended from our members
A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students
Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We
have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a
research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated
within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with
established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters
Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over
4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of
phage genomics but also stimulates students’ interest in science, positively influences academic achievement, and enhances persistence
in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating
other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science
education and research training.
IMPORTANCE: Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity
to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests
in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a
broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education
Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the
huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome annotation, and
comparative genomics, with strong impacts on bacteriophage research, increased persistence in STEM fields, and student selfidentification
with learning gains, motivation, attitude, and career aspirations
- …