17 research outputs found
Interactions between permeation and gating in the TMEM16B/anoctamin2 calcium-activated chloride channel
At least two members of the TMEM16/anoctamin family, TMEM16A (also known as anoctamin1) and TMEM16B (also known as anoctamin2), encode Ca2+-activated Cl- channels (CaCCs), which are found in various cell types and mediate numerous physiological functions. Here, we used whole-cell and excised inside-out patch-clamp to investigate the relationship between anion permeation and gating, two processes typically viewed as independent, in TMEM16B expressed in HEK 293T cells. The permeability ratio sequence determined by substituting Cl- with other anions (PX/PCl) was SCN- > I- > NO3 - > Br- > Cl- > F- > gluconate. When external Cl- was substituted with other anions, TMEM16B activation and deactivation kinetics at 0.5 \u3bcM Ca2+ were modified according to the sequence of permeability ratios, with anions more permeant than Cl- slowing both activation and deactivation and anions less permeant than Cl- accelerating them. Moreover, replacement of external Cl- with gluconate, or sucrose, shifted the voltage dependence of steady-state activation (G-V relation) to more positive potentials, whereas substitution of extracellular or intracellular Cl- with SCN- shifted G-V to more negative potentials. Dose-response relationships for Ca2+ in the presence of different extracellular anions indicated that the apparent affinity for Ca2+ at +100 mV increased with increasing permeability ratio. The apparent affinity for Ca2+ in the presence of intracellular SCN- also increased compared with that in Cl-. Our results provide the first evidence that TMEM16B gating is modulated by permeant anions and provide the basis for future studies aimed at identifying the molecular determinants of TMEM16B ion selectivity and gating. \ua9 2014 Betto et al
The Ca2+-activated Cl- channel TMEM16B regulates action potential firing and axonal targeting in olfactory sensory neurons
The Ca(2+)-activated Cl(-) channel TMEM16B is highly expressed in the cilia of olfactory sensory neurons (OSNs). Although a large portion of the odor-evoked transduction current is carried by Ca(2+)-activated Cl(-) channels, their role in olfaction is still controversial. A previous report (Billig et al. 2011. Nat. Neurosci. http://dx.doi.org/10.1038/nn.2821) showed that disruption of the TMEM16b/Ano2 gene in mice abolished Ca(2+)-activated Cl(-) currents in OSNs but did not produce any major change in olfactory behavior. Here we readdress the role of TMEM16B in olfaction and show that TMEM16B knockout (KO) mice have behavioral deficits in odor-guided food-finding ability. Moreover, as the role of TMEM16B in action potential (AP) firing has not yet been studied, we use electrophysiological recording methods to measure the firing activity of OSNs. Suction electrode recordings from isolated olfactory neurons and on-cell loose-patch recordings from dendritic knobs of neurons in the olfactory epithelium show that randomly selected neurons from TMEM16B KO mice respond to stimulation with increased firing activity than those from wild-type (WT) mice. Because OSNs express different odorant receptors (ORs), we restrict variability by using a mouse line that expresses a GFP-tagged I7 OR, which is known to be activated by heptanal. In response to heptanal, we measure dramatic changes in the firing pattern of I7-expressing neurons from TMEM16B KO mice compared with WT: responses are prolonged and display a higher number of APs. Moreover, lack of TMEM16B causes a markedly reduced basal spiking activity in I7-expressing neurons, together with an alteration of axonal targeting to the olfactory bulb, leading to the appearance of supernumerary I7 glomeruli. Thus, TMEM16B controls AP firing and ensures correct glomerular targeting of OSNs expressing I7. Altogether, these results show that TMEM16B does have a relevant role in normal olfaction
Permeation Mechanisms in the TMEM16B Calcium-Activated Chloride Channels
TMEM16A and TMEM16B encode for Ca2+-activated Cl- channels (CaCC) and are expressed in many cell types and play a relevant role in many physiological processes. Here, I performed a site-directed mutagenesis study to understand the molecular mechanisms of ion permeation of TMEM16B. I mutated two positive charged residues R573 and K540, respectively located at the entrance and inside the putative channel pore and I measured the properties of wild-type and mutant TMEM16B channels expressed in HEK-293 cells using whole-cell and excised inside-out patch clamp experiments. I found evidence that R573 and K540 control the ion permeability of TMEM16B depending both on which side of the membrane the ion substitution occurs and on the level of channel activation. Moreover, these residues contribute to control blockage or activation by permeant anions. Finally, R573 mutation abolishes the anomalous mole fraction effect observed in the presence of a permeable anion and it alters the apparent Ca2+-sensitivity of the channel. These findings indicate that residues facing the putative channel pore are responsible both for controlling the ion selectivity and the gating of the channel, providing an initial understanding of molecular mechanism of ion permeation in TMEM16B
Assessment of the olfactory function in Italian patients with type 3 von Willebrand disease caused by a homozygous 253 Kb deletion involving VWF and TMEM16B/ANO2.
Type 3 Von Willebrand disease is an autosomal recessive disease caused by the virtual absence of the von Willebrand factor (VWF). A rare 253 kb gene deletion on chromosome 12, identified only in Italian and German families, involves both the VWF gene and the N-terminus of the neighbouring TMEM16B/ANO2 gene, a member of the family named transmembrane 16 (TMEM16) or anoctamin (ANO). TMEM16B is a calcium-activated chloride channel expressed in the olfactory epithelium. As a patient homozygous for the 253 kb deletion has been reported to have an olfactory impairment possibly related to the partial deletion of TMEM16B, we assessed the olfactory function in other patients using the University of Pennsylvania Smell Identification Test (UPSIT). The average UPSIT score of 4 homozygous patients was significantly lower than that of 5 healthy subjects with similar sex, age and education. However, 4 other members of the same family, 3 heterozygous for the deletion and 1 wild type, had a slightly reduced olfactory function indicating that socio-cultural or other factors were likely to be responsible for the observed difference. These results show that the ability to identify odorants of the homozygous patients for the deletion was not significantly different from that of the other members of the family, showing that the 253 kb deletion does not affect the olfactory performance. As other genes may compensate for the lack of TMEM16B, we identified some predicted functional partners from in silico studies of the protein-protein network of TMEM16B. Calculation of diversity for the corresponding genes for individuals of the 1000 Genomes Project showed that TMEM16B has the highest level of diversity among all genes of the network, indicating that TMEM16B may not be under purifying selection and suggesting that other genes in the network could compensate for its function for olfactory ability
Conditional knockout of TMEM16A/anoctamin1 abolishes the calcium-activated chloride current in mouse vomeronasal sensory neurons.
Pheromones are substances released from animals that, when detected by the vomeronasal organ of other individuals of the same species, affect their physiology and behavior. Pheromone binding to receptors on microvilli on the dendritic knobs of vomeronasal sensory neurons activates a second messenger cascade to produce an increase in intracellular Ca2+concentration. Here, we used whole-cell and inside-out patch-clamp analysis to provide a functional characterization of currents activated by Ca2+in isolated mouse vomeronasal sensory neurons in the absence of intracellular K+. In whole-cell recordings, the average current in 1.5 \u3bcM Ca2+and symmetrical Cl-was -382 pA at -100 mV. Ion substitution experiments and partial blockade by commonly used Cl-channel blockers indicated that Ca2+activates mainly anionic currents in these neurons. Recordings from inside-out patches from dendritic knobs of mouse vomeronasal sensory neurons confirmed the presence of Ca2+-activated Cl-channels in the knobs and/or microvilli. We compared the electrophysiological properties of the native currents with those mediated by heterologously expressed TMEM16A/anoctamin1 or TMEM16B/anoctamin2 Ca2+-activated Cl-channels, which are coexpressed in microvilli of mouse vomeronasal sensory neurons, and found a closer resemblance to those of TMEM16A. We used the Cre-loxP system to selectively knock out TMEM16A in cells expressing the olfactory marker protein, which is found in mature vomeronasal sensory neurons. Immunohistochemistry confirmed the specific ablation of TMEM16A in vomeronasal neurons. Ca2+-activated currents were abolished in vomeronasal sensory neurons of TMEM16A conditional knockout mice, demonstrating that TMEM16A is an essential component of Ca2+-activated Cl-currents in mouse vomeronasal sensory neurons
Odorant-induced responses recorded from olfactory receptor neurons using the suction pipette technique
Animals sample the odorous environment around them through the chemosensory systems located in the nasal cavity. Chemosensory signals affect complex behaviors such as food choice, predator, conspecific and mate recognition and other socially relevant cues. Olfactory receptor neurons (ORNs) are located in the dorsal part of the nasal cavity embedded in the olfactory epithelium. These bipolar neurons send an axon to the olfactory bulb (see Fig. 1, Reisert & Zhao, originally published in the Journal of General Physiology) and extend a single dendrite to the epithelial border from where cilia radiate into the mucus that covers the olfactory epithelium. The cilia contain the signal transduction machinery that ultimately leads to excitatory current influx through the ciliary transduction channels, a cyclic nucleotide-gated (CNG) channel and a Ca(2+)-activated Cl(-) channel (Fig. 1). The ensuing depolarization triggers action potential generation at the cell body. In this video we describe the use of the "suction pipette technique" to record odorant-induced responses from ORNs. This method was originally developed to record from rod photoreceptors and a variant of this method can be found at jove.com modified to record from mouse cone photoreceptors. The suction pipette technique was later adapted to also record from ORNs. Briefly, following dissociation of the olfactory epithelium and cell isolation, the entire cell body of an ORN is sucked into the tip of a recording pipette. The dendrite and the cilia remain exposed to the bath solution and thus accessible to solution changes to enable e.g. odorant or pharmacological blocker application. In this configuration, no access to the intracellular environment is gained (no whole-cell voltage clamp) and the intracellular voltage remains free to vary. This allows the simultaneous recording of the slow receptor current that originates at the cilia and fast action potentials fired by the cell body. The difference in kinetics between these two signals allows them to be separated using different filter settings. This technique can be used on any wild type or knockout mouse or to record selectively from ORNs that also express GFP to label specific subsets of ORNs, e.g. expressing a given odorant receptor or ion channel
Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms
TMEM16F is a membrane protein with possible dual function as an ion channel and a phospholipid scramblase. The properties of ion channels associated with TMEM16F and the link between ion channel and scramblase activity are a matter of debate. We studied the properties of four isoforms of TMEM16F generated by alternative splicing. Upregulation of three TMEM16F isoforms or silencing of endogenous TMEM16F increased and decreased, respectively, both scramblase and channel activities. Introduction of an activating mutation in TMEM16F sequence caused a marked increase in phosphatidylserine scrambling and in ion transport indicating direct involvement of the protein in both functions. TMEM16F, also known as ANO6, is a membrane protein that has been associated with phospholipid scramblase and ion channel activity. However, the characteristics of TMEM16F-dependent channels, particularly the ion selectivity, are a matter of debate. Furthermore, the direct involvement of TMEM16F in phospholipid scrambling has been questioned. We studied the properties of different TMEM16F variants generated by alternative splicing. Using whole-cell patch-clamp recordings, we found that V1, V2 and V5 variants generated membrane currents activated by very high (micromolar) intracellular Ca(2+) concentrations and positive membrane potentials. These variants showed different degrees of Ca(2+) sensitivity and kinetics of activation but similar ion permeability, characterized by a slight selectivity for Cl(-) over Na(+) . A fourth variant (V3) showing a unique carboxy-terminus was devoid of activity, in agreement with its intracellular localization. We also measured scramblase activity using the binding of annexin V to detect phosphatidylserine on the cell surface. V1, V2 and V5 variants were associated with calcium-dependent phosphatidylserine externalization. Interestingly, introduction of an activating mutation, D409G, produced a marked increase in the apparent Ca(2+) sensitivity of TMEM16F-dependent channels. In parallel, this mutation also enhanced the extent of phosphatidylserine externalization that occurred even under resting conditions. These results support the conclusion that TMEM16F proteins are directly involved in dual activity, as a phospholipid scramblase and as an ion channel