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Abstract

TMEM16A and TMEM16B encode for Ca®*-activated CI~ channels (CaCC) and are
expressed in many cell types and play a relevant role in many physiological processes.
Here, | performed a site-directed mutagenesis study to understand the molecular mecha-
nisms of ion permeation of TMEM16B. | mutated two positive charged residues R573 and
K540, respectively located at the entrance and inside the putative channel pore and | mea-
sured the properties of wild-type and mutant TMEM16B channels expressed in HEK-293
cells using whole-cell and excised inside-out patch clamp experiments. | found evidence
that R573 and K540 control the ion permeability of TMEM16B depending both on which side
of the membrane the ion substitution occurs and on the level of channel activation. More-
over, these residues contribute to control blockage or activation by permeant anions. Finally,
R573 mutation abolishes the anomalous mole fraction effect observed in the presence of a
permeable anion and it alters the apparent Ca*-sensitivity of the channel. These findings
indicate that residues facing the putative channel pore are responsible both for controlling
the ion selectivity and the gating of the channel, providing an initial understanding of molecu-
lar mechanism of ion permeation in TMEM16B.

Introduction

Ca®"-activated Cl~ channels (CaCCs) are widely expressed in different cell types where they
play a variety of important physiological roles. A classical example of the CaCC’s function is
that of some amphibian oocytes where they block the polyspermy [1]. In olfactory and vom-
eronasal sensory neurons, CaCCs mediate a large component of transduction current [2-5]
and in other neuronal cell types they can control excitability [6]. Moreover, they regulate the
fluid transport in different types of epithelia [7] and modulate the activity of smooth muscles
of the blood vessels [8,9].

CaCCs are interesting because of their various hallmark features. In particular, they are
directly gated by sub-micromolar/micromolar concentrations of intracellular Ca** and the
apparent Ca®*-sensitivity depends on membrane voltage [10]. At low [Ca®*]; CaCCs show a
voltage-dependent outward rectifying conductance whereas, at higher concentrations, the cur-
rent becomes leak-like with an ohmic relation. Finally, the pore of CaCCs shows a relatively
poor selectivity among anions following the “lyotropic” sequence SCN™>I">Br >Cl >F~
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[10]. Moreover the permeant anions differently affect the channel conductance and the appar-
ent Ca**-sensitivity [10].

A long lasting effort to find the molecular counterparts of CaCCs culminated in 2008 with
the discovery of two members of the TMEM16 family, TMEM16A and TMEM16B (also
known as anoctamin-1 and -2) [11-13]. The TMEM16 family is well conserved through the
evolution and in vertebrates it is composed of ten members (TMEM16A to K with I skipped;
[14]). Even if the function of some TMEMI16 proteins has not been characterized yet, different
studies showed a big functional variability. Indeed, TMEM16 can be an ion channel (A, B and
F [11-13,15-17]), a regulator of other ion channels (C, [18]) or a scramblase (C, D, F, G and J;
[19].

In 2014, Brunner et al. [20] solved the crystal structure of a TMEM16 from the fungus Nec-
tria haematococca named nhTMEM16. The closest mammal homologues of nh TMEM16 are
TMEM16H and K. However, the CaCCs TMEM16A and B retain about 40% homology with
the transmembrane region of nthTMEM16 suggesting that all members of the family share a
similar structure [20]. Functional characterization of nhTMEM16 using reconstituted protein
into liposomes showed that it could act as Ca**-dependent scramblase mediating the transport
of the phospholipids across the two membrane leaflets [20]. However, all attempts to detect
any ion channel activity mediated by nh TMEM16 have—so far—failed [20]. The X-ray struc-
ture of nhTMEM16 showed that it formed a dimeric protein with a rhombus shape of about
130 X 40 A in dimension when viewed from an extracellular side [20]. Both the N- and C- ter-
mini were localized on the intracellular side of the membrane and they were responsible for
the largest part of the interface surface between the two dimer subunits [20]. Biochemical stud-
ies showed that also mouse TMEM16A, B and F formed homodimers [21-23] and with muta-
genesis experiments in TMEM16A a short N-terminus region between residues 117 and 179
was found sufficient for dimer formation, necessary condition for proper channel trafficking
to plasma membrane (for TMEM16A all the numbers refer to splice variant “a” asin [11];
[23]). The transmembrane region of nhTMEM16 is composed by 10 membrane-spanning o.-
helices (o1 to 010, Fig 1B) preceded by two short o-helices (a:0a and a0b) that only peripher-
ally interact with the inner membrane leaflet [20]. Moreover, two short o-helix, o5’ and 06,
are located respectively in the extracellular loop connecting 0.5 and 0.6 and intracellularly, in
the loop between a6 and o7. The crystal structure revealed that each subunit organized a Ca**-
binding site composed by three glutamates (E452, E506, E535), two aspartates (D503, D539)
and an asparagine (N448). All these residues are highly conserved in most TMEM16 proteins
and mutagenesis studies showed that all the charged residues control the Ca**-sensitivity in
TMEMI16A and F indicating that they share a Ca**-activation mechanisms [17,24,25]. More-
over, these residues are localized in the transmembrane o-helices (06, 7 and 8) explaining the
voltage dependent Ca**-sensitivity observed in TMEM16A, B and F [15-17,24]. While the
nhTMEM16 structure did not show a clear pore resembling those of the voltage-gated cation
channel [26], it showed a narrow twisted crevice 8-11 A wide composed by the helices a3 to
o7 of the same subunit facing the membrane and it has been proposed to be forming the chan-
nel pore [20]. Indeed, mutagenesis studies in the equivalent region of TMEM16A and F found
that the residues facing this crevice control the ion selectivity [17,27,28] or the ion conductance
[25] indicating a key role on ion transportation. However, studies on mouse TMEM16A
reported contradictory results about the role of the residue R617. Based on the structure of
nhTMEM16, R617 is located in the extracellular loop connecting a5 and a6, at the entrance of
the protein crevice [20]. And while Yang et al. [13] reported that R617E mutant had an altered
ion selectivity, a later study did not find significant differences with the wt channel [25]. Never-
theless, reports on R617A mutant found that there is an alteration in permeability properties
when the channel is activated by high [Ca®']..
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Fig 1. TMEM16 proposed topology. (A) Alignment between TMEM16A and TMEM16B with mutated
residues highlighted in color. (B) Proposed topology of TMEM16B based on the structure of "(hnTMEM16 with
the mutated amino acids indicated in their predicted positions.

doi:10.1371/journal.pone.0169572.9001

Here, I mutagenized the homologous of R617 in TMEM16B (R573, Fig 1) to clarify its role
in controlling the ion selectivity; moreover, I studied the permeability of a mutant of the
homologous of K584 (K540, Fig 1) located deeper in the putative channel pore.

Materials and Methods
Site-directed mutagenesis of TMEM16B and heterologous expression

Full-length mouse TMEM16B cDNA in pCMV-Sport6 mammalian expression plasmid was
obtained from RZPD (NCBI Protein database accession NP_705817.1). Mutations were made
using a PCR-based site directed mutagenesis and confirmed by DNA sequencing. HEK 293
(American Type Culture Collection) cells were transfected with 2 ug TMEM16B by using X-
tremeGENE (Roche) following manufacturer instructions. Cells were cotransfected with

0.4 pg mCherry (Clontech) for fluorescent identification of transfected cells.

Electrophysiological recordings and ionic solutions

Electrophysiological recordings were performed using the whole-cell and inside-out patch
clamp configurations. Borosilicate glass pipettes (WPI) were pulled with a PP-830 puller (Nar-
ishige). Currents were recorded with an Axopatchl-D amplifier controlled by Clampex 9 via a
Digidata 1332A (Axon Instruments). Data were sampled at 10 kHz after a low-pass filter at 4
kHz. Experiments were performed at room temperature (20-22°C). The bath solution was
grounded via a 3M KClI agar bridge connected to an Ag/AgCl reference electrode. Fast-Step
SF77B (Warner Instruments Corp.) were used to rapid (<5 ms) solutions exchanging. Liquid
junction potentials were calculated by pClampex software and the applied voltages were cor-
rected off-line.

For inside-out recordings, the standard solution in the patch pipette contained (in mM):
140 NaCl, 10 HEDTA, and 10 Hepes, pH 7.2. The bathing solution at the intracellular side of
the patch contained (in mM): 140 NaCl, 10 HEDTA, and 10 Hepes, pH 7.2, and no added Ca**
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for the nominally 0 Ca®* solution, or various added Ca** concentrations, as calculated with the
program WinMAXC(C. Patton), to obtain free Ca>* in the range between 1.5 and 100 uM. For
the solution containing 1 mM of Ca®* HEDTA was omitted. For experiments using N(CN),~
and C(CN);~ 100 uM free Ca®* concentration was obtained directly by adding 100 uM of
CaCl, without HEDTA. Since C(CN);~ was available only as potassium salt, symmetrical KCl
solutions were used as control conditions. A previous report [29] showed that solutions con-
taining SCN™ and C(CN);™ can have different effects depending on the age of the solution,
therefore we prepared new solutions weekly.

In some experiments NaCl in bath or pipette solutions was reduced to 100, 50, 20, 5 mM
and sucrose was added to maintain the osmolality. For permeability experiments, CI” was
substituted with other anions by replacing NaCl on an equimolar basis with NaX, where X is
the substituted anion.

For whole-cell recordings, the cells were kept in mammalian Ringer standard solution con-
taining (in mM): 140 NaCl, 5 KCl, 2 CaCl,, 1MgCl,, and 10 Hepes, pH 7.4. The pipette solu-
tion contained (in mM): 140 NaCl, 10 Hepes, and 10 HEDTA, pH 7.2, and Ca** solution,
1.242 or 3.209 mM CaCl, to obtain 0.5 or 1.5 uM free Ca** respectively. Permeability experi-
ments were performed bathing the cells in a solution containing (in mM): 140 NaCl, 10 Hepes,
10 HEDTA pH 7.2 or 140 NaSCN, 1 NaCl, 10 Hepes, 10 HEDTA pH 7.2.

Data analysis

Data are presented as mean + SEM (standard error of the mean), with # indicating the number
of cells or excided patches. Since some data were not normally distributed (tested with Sha-
piro-Wink test) the statistical significance was determined using U-test (Wilcoxon-Mann-
Whitney rank test) or Wilcoxon signed rank test for paired data, or the Kruskal Wallis test for
multiple comparisons. When statistical significance was determined by Kruskal Wallis test, a
post hoc Dunn test was performed to evaluate which data groups showed significant differ-
ence. p value <0.05 was considered significant. Data analysis and figures were made with Igor
Pro Software (Wavemetrics).

Results
Cationic-anionic permeability in TMEM16B wt and mutant channels

To study the ionic permeability of wt and mutated TMEM16B, I performed inside-out experi-
ments from excised patches from HEK-293 cell transiently transfected. This approach allowed
a good control of the solutions facing both sides of the membrane; therefore it reduced the pos-
sible effects due to local ion accumulation occurring in whole-cell recordings. Fig 2A, top
panel, shows currents activated with I mM Ca®* with voltage ramp protocol from +100 mV to
-100 mV in the presence of the indicated concentration (in mM) of intracellular NaCl. The
reduction of intracellular NaCl from 140 to 5 mM shifted the reversal potential from -0.5 =

0.2 mV to -67 £ 2 mV (n = 7), indicating that TMEM16B mediated a current mainly carried by
Cl” ions. Indeed the permeability ratio between Na™ and Cl™ (Pn./Pqy) calculated by Goldman-
Hodgkin-Katz equation resulted to be 0.051 + 0.005 (n = 7). I repeated the same experiments
using HEK-293T cells expressing R573E, K540Q and R573E+K540Q TMEM16B mutants.

Fig 2A illustrates voltage ramp recordings from each mutant in the presence of different intra-
cellular NaCl concentrations. In contrast with the wt channel, in R573E and R573E+K540Q
mutants, the reduction of intracellular [NaCl] from 140 to 5 mM shifted the reversal potential
toward positive values by 36 + 7 (n = 5) and 42 + 7 (n = 6) respectively (Fig 2B). This indicates
a change in cationic versus anionic selectivity; indeed the Py,/Pc became 3.1 + 0.9 for R573E
and 4 +1 (n = 6) for R573E+K540Q (Fig 2C). Whereas the K540Q mutant retained a preference
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Fig 2. Intracellular sodium permeability in TMEM16B wt and mutant channels. An inside-out patch
expressing TMEM16B wt or the indicated mutants was exposed to different cytoplasmatic [NaCl] and the IV
relation was determined by a voltage ramp from -100 to +100 mV. The current was activated by 1 mM CaCl,.
Leakage currents measured in 0 Ca* were subtracted. (B) Average E,, corrected for liquid junction potential
was plotted versus [CI”]; for TMEM16B wt and mutant channels (n = 5-6). (C) Mean permeability ratio
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between Na* and CI™ (Pna/Pc;) in TMEM16B wt and mutant channels calculated with Goldman-Hodgkin-Katz
equation from recordings with 20 mM [NaCl]; (n = 6). (D) Ratios between the currents measured at +60 and
-60 mV with symmetrical 140 NaCl solutions for TMEM16B wt and mutant channels (n=7-12; *p<0.05
*%*p<0.01 Dunn test after Kruskal Wallis test).

doi:10.1371/journal.pone.0169572.g002

toward anion permeability even though the sodium permeability significantly increased about
100 fold (Fig 2C). These results show that both R573 and K540 residues are important struc-
tural elements to control the permeation in the TMEM16B channel.

Interestingly, all TMEM16B mutants showed an altered rectification behavior. Indeed,
while in TMEM16B wt the ratio between the current amplitude at +60 and -60 mV upon stim-
ulation with saturating [Ca®*]; was 0.64 + 0.02 (n = 11) indicating an inward rectification, in
the mutants it ranged from 1.51 £ 0.07 (n = 12) for R573E+K540Q to 2.7 £ 0.1 (n = 7) for
K540Q indicating an outward rectification (Fig 2D).

To test possible asymmetric cationic vs anionic permeation through the TMEMI16B pore, I
also evaluated the ionic permeability reducing the NaCl concentration to 20 mM in the pipette
solutions bathing the extracellular leaflet of the membrane. Fig 3A shows the current activated
by 1 mM of Ca®* with a ramp protocol from +100 to -100 mV. The reversal potential in these
ionic conditions for TMEM16B wt channel was 35 + 3 mV (n = 7), significantly different from
-0.5 + 0.2 obtained in symmetrical NaCl solutions (n = 7, U-test, Fig 2B). Interestingly, these
experiments indicated that the Na* permeability was significantly higher than the value
obtained by reducing the intracellular NaCl concentration, indeed Py,/P¢; changed from
0.051 £ 0.05 to 0.12 + 0.03 (U- test), indicating an asymmetrical cation permeation in
TMEM16B wt channel. Similar to the results obtained by reducing the intracellular [NaCl]
(Fig 2), R573E single and R573E+K540Q double mutants showed a significant increase of Na*
permeability. However, in contrast with the wt channel, in both mutants Py,./P¢; was lower for
the permeation from the extracellular side. Finally, K540Q mutants showed a symmetrical
Pna/Pc and the permeation from the extracellular side was not significantly different from
TMEM16B wt channel.

In another set of experiments, I determined the anionic selectivity of TMEM16B mutants. I
replaced the NaCl in the bath solution with equimolar NaBr, Nal, NaNO; and NaSCN and I
activated the current with 100 uM Ca** using a ramp from +100 to -100 mV. As previously
reported TMEM16B wt channel was more permeable to anions bigger than C1[15,16,30]. Rel-
ative permeability ratios (Px/P¢;) were calculated with Goldman-Hodgkin-Katz equation and
followed the sequence SCN (14) > I (4.6) > NOs (3.5) > Br (2.08) (Fig 4A-4E). Also in all
mutants Br-, NO3~, I", SCN™ were more permeable than Cl™ but the relative permeability
ratios were significantly reduced (Fig 4B-4E). For example, P1/Pc; was 2.0 + 0.2 for R573E,
2.4+ 0.1 for K540Q and 1.5 + 0.1 for R573E+K540Q, significantly smaller than 4.6 + 0.4 mea-
sured in wt channel (n = 6-10, Dunn-test after Kruskal Wallis test). Moreover, R573E mutants
showed also an alteration in the permeability sequence with respect to the wt channel; indeed
I” was less permeable than NO;".

Finally, since a previous report showed that in TMEM16A anion permeability was affected
by the level of channel activation by [Ca®*]; [27], I determined the permeability of SCN™ of wt
and of mutant TMEM16B channel (Fig 5A) upon stimulation of sub-saturating [Ca®*]; of
0.5 uM (for wt and K540Q), or 1.5 uM (for R573E and R573E+K540Q). A comparison among
Pscn/Pcy of wt and mutant TMEM16B channel at sub-saturating [Ca®*); (Fig 5B) did not show
any significant difference (p>0.05, Kruskal Wallis test). In addition, Pscn/Pc; for wt TMEM16B
channel was not affected by [Ca®*]; (12.8 £ 0.9 at 100 pMvs 15 + 1 at 0.5 uM, n = 6-14, p>0.05
U-test), whereas Pscn/Pc for each mutant was significantly higher at sub-saturating than at
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Fig 3. Extracellular sodium permeability in TMEM16B wt and mutant channels. (A) An inside-out patch
expressing TMEM16B wt or the indicated mutant was exposed to bath solution with 140 mM NaCl while the
pipette solution contained only 20 mM of NaCl. The IV relation was determined by a voltage ramp from -100
to +100 mV and the current was activated by 1 mM CaCl,. Leakage currents measured in 0 Ca®* were
subtracted. (B) Mean permeability ratio between Na* and CI™ (Pno/Pg)) in TMEM16B wt and mutant channels
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calculated with Goldman-Hodgkin-Katz equation from recordings with 20 mM NaCl in the pipette or in the bath
solution (n=6-11; *p<0.05 **p<0.01 Dunn test after Kruskal Wallis test; #p<0.05 ##p<0.01 U-test).

doi:10.1371/journal.pone.0169572.g003

100 uM [Ca**];. For example, Pscn/P for K540Q was 6.4 + 0.8 at 100 uM vs 11 + 1 at 0.5 uM
[Ca*'] (n = 6, p<0.05 U-test). Moreover, similar results were obtained activating wt and K540Q
with 1.5 pM instead of 0.5 pM [Ca®']; (data not shown). These results show that R573E and
K540Q residues in TMEM16B channel modify anion permeability only at high [Ca®']..

Ca?*-sensitivity of TMEM16B pore mutants

Since previous reports showed a dependence of calcium sensitivity by permeating ions [29,31],
I examined the dependence of TMEM16B pore mutants on intracellular Ca** concentration
under symmetrical NaCl conditions. I activated the current by various [Ca>*]; and stepped the
membrane voltage to -50 and +50 mV as shown in Fig 6A. I measured the current amplitude
at the end of each voltage step by taking the mean value between 175 and 195 ms, normalized
to the maximum value at the same voltage and plotted versus the [Ca®); (Fig 6B). Data were
fitted by Hill equation:

I B [C aZﬂ :‘H )
L. G K W
where I is the current, I,,,,, is the maximum current, K, is the half-maximum [Ca®*];, and ny
is the Hill coefficient.

As previously reported [15,16,32], in TMEM16B wt channel the K;,, was slightly voltage-
dependent ranging from 4.6 £ 0.2 pM at -50 mV to 2.9 + 0.1 uM at +50 mV (n = 7; Wilcoxon
signed rank test; Fig 6C). Similar results were obtained for K540Q mutant, whereas R573E and
R573E+K540Q showed a significant increase of K, reaching at -50 mV 28 + 4 uM and 44 +
15 uM respectively. Moreover, in R573E mutant there was no significant difference of apparent
Ca’"-sensitivity between positive and negative potentials (Wilcoxon signed rank test). For all
mutants nyy was between 1 and 2 and it was not significantly different from the wt value (Fig
6D). These data suggest a possible molecular coupling between channel permeation and
gating.

Anomalous mole fraction effect

Previous reports showed that TMEM16A and some native Ca**-activated Cl~ channels [28,29]
have an anomalous mole fraction effect in the presence of more permeable anions. Therefore,
I tested the permeability of TMEM16B in the presence of different amounts of SCN™ and
dicyanamide N(CN), ™ upon stimulation of the current with saturating Ca’* concentration in
excised inside-out patches. As previously shown for native Ca®*-activated Cl~ channels of
Xenopus oocytes, I did not find a dependence of SCN™ permeability on mole fraction (data not
shown, [29]). In contrast, I observed that relative permeability ratio between N(CN),™ and

Cl” (Pn(cny2/Par) changed based on dicyanamide mole fraction. In particular, Py(cny2/Par
increased with the raising of N(CN), ™ intracellular concentration ranging from 8.7 + 0.3 to

13 + 0.9 for 0.05 and 1 mole fraction respectively (1 = 6; Wilcoxon signed rank test, Fig 7A-
7D). All pore mutants showed a significant reduction of the dicyanamide permeation confirm-
ing their role in the control of the ion pathway (Fig 7D). Moreover, interestingly, both single
R573E and R573E+K540Q double mutant did not show an anomalous mole fraction behavior,
indeed Py cn2/Pc did not significantly change from 0.05 to 1 mole fraction (Fig 7A-7D,
Wilcoxon signed rank test). In contrast, K540Q mutant retained dicyanamide permeation
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Fig 4. Anionic selectivity in TMEM16B wt and mutant channels. An inside-out patch expressing
TMEM16B wt (A), R573E (B), K540Q (C), or R573E+K540Q (D) was exposed to bath solutions containing
140 mM NaCl (black traces) or the Na salt of other anions, as indicated. The gray traces represent the wash
out with NaCl. The IV relation was determined by a voltage ramp from -100 to +100 mV and the current was
activated by 100 uM [Ca?*].. Leakage currents measured in 0 Ca®* were subtracted. (E) Average permeability
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ratio between substituted anions and CI™ (Px/P¢)) calculated with Goldman-Hodgkin-Katz equation (n= 3-10;
*p<0.05 **p<0.01 Dunn test after Kruskal Wallis test).

doi:10.1371/journal.pone.0169572.g004

dependence on anion concentration in intracellular solution (Fig 7A-7D, Wilcoxon signed
rank test).

Then I investigated the effect of N(CN),™ on the current amplitude. Therefore I plotted the
ratio between the current in the presence of different amount of intracellular N(CN), ™ and in
control conditions (I/I n(cny2 = o) Versus the driving force (V-E,.; Fig 7C). Fig 7D shows the
current ratios at +80 and -80 mV of the driving force plotted versus the intracellular N(CN),~
concentration. In TMEM16B wt channel N(CN), ™ induced a voltage dependent increase of
current amplitude that was higher at +80 than at -80 mV of the driving force. The data at +80
mV could be fitted by Hill equation and gave a K;,, of 65 £ 10 mM (n = 6, Fig 7D and 7E). In
all pore mutants N(CN), " also induced a voltage dependent change of the current amplitude
but in the opposite direction, indeed the increase induced by N(CN), ™ at -80 mV of the driving
force was significantly higher than at +80 mV (Fig 7D; Wilcoxon signed rank test). Moreover,
while at -80 mV only R573E mutants showed a significant higher effect of N(CN),™ on current
amplitude with respect to the wt channel, at +80 mV of the driving force all pore mutants
showed a reduction of N(CN), " effect (Fig 7F). However, the K, obtained by fitting the data
at +80 mV with Hill equation (Eq 1) did not show a significant change from the values
obtained from TMEM16B wt channel.

Blockage by permeant anions

Previous investigations on native Ca>*-activated Cl~ channel of Xenopus oocyte showed that
some permeant anions could block the channel [29]. Therefore, I investigated the effect of tri-
cyanomethanide, C(CN);~ on TMEM16B channel. I measured the currents in excised inside-
out patches replacing the KCI bath solution with KC(CN);. The currents were activated by
100 uM Ca** using voltage ramp from +100 to -100 mV. Replacement of C1~ with C(CN);”
shifted the reversal potential toward positive values indicating a bigger relative permeability
with respect to Cl". Indeed, Pc(cnys/Pc calculated with Goldman-Hodgkin-Katz equation
resulted 9 £ 1 (n = 6, Fig 8A and 8B). To evaluate the effect of tricyanomethanide on the con-
ductance I calculated the ratio between the current amplitude in the presence of C(CN); ™ and
in ClI” symmetrical conditions at -80 and +80 mV of driving force. At both driving forces C
(CN);™ induced a significant reduction of the current, indeed I(cn)3/Ic reached 0.4 + 0.1 at
-80 mV and 0.52 + 0.08 at +80 mV (n = 6, Wilcoxon signed rank test, Fig 7C). I repeated the
same experiments with pore mutants and, similar to the results obtained for the other anions
(Fig 4), C(CN);™ was found to be less permeable in mutants than in TMEM16B wt channel
(Fig 8A and 8B). Moreover, in contrast with the wt channel, in all mutants tricyanomethanide
did not cause a blockage of the channel but it induced a significantly increase of the current
amplitude with a higher effect at -80 mV than +80 mV of driving force (Fig 8C). The activation
of the current induced by C(CN);~ was larger in R573E single mutants with an increase of

8 +2and 2.6 +0.2 fold at -80 mV and +80 mV of the driving force respectively (Fig 8C).

Extracellular anionic selectivity in whole-cell recordings

Finally, I measured the anionic permeability of TMEM16B channel in whole-cell recordings. I
dialyzed the cells with a solution containing 0.5 uM (for wt and K540Q) or 1.5 uM (for R573E
and R573E+K540Q) free Ca®* concentration and I stimulated the current with a ramp protocol
from +100 to -100 mV replacing NaCl from extracellular solution with NaSCN. In TMEM16B
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ratio between SCN™ and CI™ (Pgcn/Pe)) for TMEM16B wt and mutant channels with 100 uM [Ca®*]; (empty
bars, data from Fig 4E) or sub-saturating [Ca®*]; (filled bars. n= 6—14; ** p<0.01 U-test).

doi:10.1371/journal.pone.0169572.g005

wt channel the replacement of NaCl with NaSCN caused a significant shift of reversal potential
toward negative values. This indicated that SCN™ was more permeable than CI™ ions. I calcu-
lated the relative permeability ratio between SCN™ and CI” using the Goldman-Hodgkin-Katz
equation and obtained a Pscn/Pc 0f 9 + 1 (1 = 7), slightly but significantly lower than the
value acquired in inside-out experiments (Figs 9 and 5, p<0.05 U-test). In accordance with the
data obtained in inside-out recording using sub-saturating [Ca®*];, Psen/Pg for all mutants
were not significantly different from the value obtained from TMEM16B wt channel (p>0.05
Kruskal Wallis test). These results confirmed the role of the level of channel activation in con-
trolling mutant channels permeability (see Discussion).

Discussion

Here, I provide a site-direct mutagenesis study investigating the molecular mechanisms of ion
selectivity in the TMEM16B Ca**-activated Cl~ channels. I mutated two residues, R573 and
K540, both conserved between TMEM16A and B (Fig 1) and I found specific alterations in the
ion selectivity, calcium sensitivity and the blockage by permeant anions. Based on crystal struc-
ture of nhTMEM16 [20], R573 is located at the entrance of the proposed pore of the protein in
the extracellular loop between the transmembrane helices o5 and a6, while K540 is placed in
the a5 inside of the putative pore. I performed experiments using both inside-out and whole-
cell configurations. Both techniques have advantages and disadvantages. In particular, the
inside-out configuration allows for a good control of the intracellular solution composition
and to test several of them on the same patch. However, as previously reported [15,16,31,32]
the current mediated by TMEM16B undergoes an irreversible rundown, therefore I performed
the experiments in a time window in which the current amplitude was stable. Moreover, when
using the inside-out configuration, it is far from trivial to change the solution facing the extra-
cellular side of the membrane, which, on the contrary, can be easily obtained in whole-cell
recordings. However, ion depletion or accumulation could affect the value of the reversal
potential recorded in these conditions, especially in cells with high current amplitude. There-
fore, I used inside-out recordings to assess the ion selectivity and the blockage by permeant
anions in fully activated channels and to measure the Ca**-sensitivity and the whole-cell
recording to evaluate the ion permeation in only partially activated channels.

lon selectivity in R573 and K540 mutants

Inside-out experiments activating the channel with saturating [Ca**]; (1 mM or 0.1 mM)
showed the single R573 and K540 or double mutant had an altered ion selectivity upon ion
substitution from the intracellular side of the membrane. In particular, permeability to Na*
highly increased, while anions bigger than CI” (Br~,I", NO;~ and SCN") were less permeable
than in the TMEM16B wt channel. These data strongly indicate that both R573 and K540Q are
involved in controlling the ion permeation, possibly facing the ion pathway through the pore.
The effects of R573E mutation was quantitatively bigger than those of K540Q and it could be
explained by the charge inversion in R573E while in K540Q the positive charge has been only
neutralized. On the other hand, since the anion permeability through TMEM16 channels
depends monotonically (at least for the anions tested here) on the free energy of hydration
[5,11-13,16], it is possible to speculate that R573 residue, located at the entrance of the pore,
plays a prominent role in anion dehydration and in the selection of the permeant ion. Whereas
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was plotted versus the mole fraction of the substituted anion (n=6—15). The dotted line highlighted the permeability
ratio with mole fraction equal to 1 (*p<0.05 Wilcoxon signed rank test). (C) Ratios between the current amplitude in
the presence of the indicated N(CN), ™ intracellular concentration with symmetrical CI™ solution (I/I nienyz = o)
calculated from experiments in (A) were plotted versus the driving force. (D) Mean of the I/l ncn)2 = 0 Measured at
+80 and -80 mV of the driving force was plotted versus the N(CN), intracellular concentration. The continuous line
represents the fit with Hill equation (Eq 1; n=5-6; *p<0.05 Wilcoxon signed rank test between the values at -80 and
+80 mV for 140 mM N(CN),"). (E) Mean of Ky, at +80 mV of the driving force for TMEM16B wt and mutant
channels. (F) Mean of the ratios between the current measured with a solution containing 140 mM N(CN),", mole
fraction 1, and in control conditions, mole fraction 0, at -80 and +80 mV of the driving force for TMEM16B wt and
mutant channels (**p<0.01, *p<0.05 Dunn-test after Kruskal Wallis test).

doi:10.1371/journal.pone.0169572.g007

K540, deep in the channel pore interacts slightly with the ions and therefore, its mutation
causes the observed minor effect. Moreover, the R573 mutant showed an alteration in the
anion permeability sequence, indeed NO;~ was more permeable than I". This result is consis-
tent with a recent report showing that the small pore of CFTR restricts the permeation of a
large spherical ion such as I” [33]. Indeed, if R573E mutation caused a unilateral or elliptical
decrease of ion pathway this can explain both a reduction of the I" permeability and the abol-
ishment of anomalous mole fraction behaviors (see also later).

Inside-out recordings also revealed that wt TMEM16B channels had an asymmetrical Na*
permeability when fully activated, indeed Py,/Pc; was 0.051 from intracellular side of the mem-
brane, but it increased to 0.12 extracellularly. In contrast, our previous results showed no asym-
metrical anionic permeation in TMEM16B channels [31] and similar findings were reported
for Ca®"-activated Cl~ current in Xenopus oocytes [29], that are mediated by TMEMI16A [12].
However, Qu and Hartzell did not test if Na* permeability in TMEM16A was symmetrical
[29]. Here I showed that mutation of R573 increased the extracellular Na™ permeability indicat-
ing that this residue controlled the movement of Na* in both directions whereas K540 was not
involved in the exclusion of Na™ translocation.

Surprisingly, in contrast with the results obtained at saturating [Ca®"];, both inside-out
and whole cell recordings did not show significant differences in ionic selectivity between
TMEM16B wt and mutant channels when activated by sub-saturating [Ca®*];. In accordance
with my results the mutation of homologous of R573, R617 in TMEM16A did not show an
altered Py,/Pc when activated with low Ca®* in the patch pipette [25]. The dependence on the
level of channel activation could also explain the contrasting results previously obtained by
Yang et al. [13] on the same R617E mutant, showing an increase of Py,/Pc and a decrease of
permeability to anions bigger than Cl™. Indeed, even if the precise [Ca**]; used to activate the
R617E mutant in that report has not been measured, from the linear IV relation (see supple-
mentary Fig 4 of [13]) it was expected to be high enough to fully activate the channel. It is pos-
sible to speculate that R573E and K540Q mutation unmasked the differential role of some
residues in controlling the ion selectivity of TMEM16B depending on the level of the channel
activation, however further experiments will be necessary to fully clarify this phenomenon.

Very recent studies [34,35] tried to alter the P)/Py, permeability of TMEM16A as done by
Yang et al., (2014, [17]) mutating the K584 (or K588) residue in TMEM16A (homologous to
K540 in TMEM16B). Jeng et al. (2016, [35]) generated the K584Q mutation in TMEM16A and
showed that K584 is located in the pore but could not measure any change of P¢)/Py, caused
by the K584Q mutation when channels were activated by 20 uM Ca®*. Lim et al. (2016, [34])
mutated the lysine into glutamate (K588E) but, because of the low magnitude of the Ca**-acti-
vated currents, were not able to reliably characterize the ion selectivity of the mutant. How-
ever, the double mutant K588E/E702Q showed robust currents and P /Py, did not vary in
K588E/E702Q. In addition, they showed that P¢; /Py, in the wt TMEM16A did not change
when Ca®" was varied from 2 uM to 1 mM, although they did not report similar experiments
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wt and mutant channels calculated with Goldman-Hodgkin-Katz equation. (C) Mean of the ratios between the current
measured with a solution containing 140 mM C(CN)3™ and in control conditions, at -80 and +80 mV of the driving force for
TMEM16B wt and mutant channels (**p<0.01, *p<0.05 Dunn-test after Kruskal Wallis test).

doi:10.1371/journal.pone.0169572.9008

for the double mutant. The reasons for the differences between results obtained by Lim et al.
and Jeng et al. (2016, [34,35]) and those reported in Yang et al. (2012, [17]) are not clear, but
Jeng et al. (2016, [35]) suggested that “differences in experimental methods, for example, using
NMDG-SO, versus sucrose to replace intracellular NaCl [34] and/or analyses (such as subtrac-
tion of the endogenous leak current; Fig S2 of [35]) may explain the discrepancy”.

Data on K540Q of TMEM16B presented in this paper showed not only a change of P, /P¢;
permeability (Fig 2) with respect to wt, but also changes in the permeability ratio of several
anions compared to Cl~ at high Ca** concentrations (Fig 4). Differences between my results
on TMEM16B and recent data on TMEM16A [34,35] could be due to differences among chan-
nels, or could be due to differences in experimental methods, such as the use of sucrose versus
NMDG-SOj, to replace intracellular NaCl, but not to data analysis, as I did subtract the endog-
enous leak current in 0 Ca®*. Furthermore, the two recent studies [34,35] did not investigate
permeability among anions and therefore I cannot further compare the results of my experi-
ments obtained with different anions.

Ca?*-sensitivity of TMEM16B pore mutants

Structural, biochemical and mutagenesis experiments showed that TMEM16 protein were
activated by direct Ca**-binding [20,24,25,36,37]. Both TMEM16A and B were activated in
sub-micromolar/micromolar concentration range with TMEM16B slightly less sensitive than
TMEMI16A [15,16,24,30,32,38]. Moreover our previous results showed that in TMEM16B the
apparent Ca®" sensitivity depends on permeant anions [31]. For example, intracellular or
extracellular substitution of CI” with SCN™ shifts the K, at +100 mV from 2.8 uM to 1.28 uM
and 0.8 uM respectively [31]. Also experiments on TMEMI16A from Xenopus tropicalis
reported an increase of Ca®*-sensitivity upon extracellular substitution of CI~ with I" [28],
confirming the data from native Ca**-activated Cl~ channel expressed in Xenopus laevis
oocytes [29]. All these data indicate a connection between channel gating and ion permeation
that seems a common feature of CI” channels, and in fact it has been observed also in CIC fam
ily [39].

Here I report that R573 mutation, which affected the Cl™ permeability of the channel, also
caused a big decrease of apparent Ca®"-sensitivity. Given the positive charge of this residue
and previous structural data and mutagenesis, it is unlikely that the observed results were due
to a loss of direct interaction with Ca** ions in the mutated channel. It is instead tempting to
speculate that R573E mutation affecting the binding of Cl allosterically alters the Ca®* binding
to the channel. Regardless of the precise molecular mechanisms, these data confirm a connec-
tion between gating and permeation in the TMEM16B channel.

Anomalous mole fraction effect

Anomalous mole fraction effect (AMFE) was found in many different types of ion channels
such as the voltage gated Ca>*-channel [40], the ryanodine receptor [41] or the cyclic nucleo-
tide-gated channel [42] and also the CaCC expressed in Xenopus oocyte [29]. Moreover, stud-
ies on mouse and Xenopus tropicalis TMEM16A showed a significant deviation of reversal
potential values recorded with different mixtures of CI” and other anions from the prediction
obtained with the Goldman-Hodgkin-Katz equation [28,43].
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a voltage ramp from +100 to -100 mV from HEK-293 cells expressing TMEM16B wt or the indicated mutants
in control extracellular solution containing NaCl (black traces), NaSCN (colored traces) and after wash out
(gray traces). (C) Mean permeability ratio between SCN™ and CI” for TMEM16B wt and mutant channels
(n=5-7, p>0.05 Kruskal Wallis test).

doi:10.1371/journal.pone.0169572.g009

Also here we find that TMEM16B shows an AMFE with dicyanamide: in our experiments,
in fact, the Py(cny2/Pcr changed depending of N(CN), ™ mole fraction. Interestingly the AMFE
was lost in R573E single and R573E+K540Q double mutants confirming the role of this resi-
due in controlling the ion permeation. In K540Q mutant, even if N(CN), ™ was significantly
less permeable than in wt channel, the AMFE was still present.

AMEE is generally explained as the indication that multiple ions are moving through the
channel pore along a single line [44]. However, an alternative mechanism has been proposed
to explain the AMFE. In this picture the AMFE depends on a local depletion of the ion concen-
tration close to an ion binding site that reduces the current of that ion species through the
pore. This model was originally proposed by Nonner et al. [45] and it can predict AMFE even
when (on average) less than one ion is found in the channel pore. The AMFE in the L-type
Ca* channel [46] and in the ryanodine receptor [47] could be predicted by this model. How-
ever, more experiments are still needed to fully clarify which mechanism is responsible for
AMEE in TMEM16A and B.

Blockage/activation by permeant anions

Our previous studies showed that the pore occupancy by permeant anions controlled the gat-
ing of TMEM16B [31]. Similar results were obtained in TMEM16A [43] and in native CaCCs
from Xenopus oocytes [29] or from acinar cells of rat parotid gland [48]. Here, we report that
mutation of R573 and K540 alters the activation by intracellular N(CN),™ and reverts the
blockage of C(CN);~ with an increase of the current amplitude. These data suggest that the
effect of these anions on channel conductance depend, at least partially, on the same residues
controlling the permeability, confirming the strong connection between permeation and gat-
ing in the TMEM16B channel. Moreover, since this process is voltage-dependent, it indicates
that both R573 and K540Q are subject to the membrane voltage field, even if further experi-
ments will be necessary to measure precisely their position along the electric field.

Conclusions

In conclusion, I found some evidence that R573 and K540 residues control the ion permeabil-
ity of TMEM16B channel. This effect is asymmetrical across the plasma membrane and
depends on the level of channel activation. Moreover, these residues contribute also to control
the blockage or the activation by permeant anions. These data confirm that the proposed pore
observed in the crystal structure of nhTMEM16 is involved in controlling ionic flux through
the membrane. Further studies will clarify the relative contributions of the different portions
of the pore in controlling ion selectivity and gating in TMEM16 ion channels.
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