142 research outputs found
Recommended ideal-gas thermochemical functions for heavy water and its Substituent isotopologues
Accurate temperature-dependent ideal-gas internal partition functions, Qint(T), and several derived thermochemical functions are reported for heavy water, with an oxygen content corresponding to the isotopic composition of Vienna Standard Mean Ocean Water (VSMOW), and its constituent isotopologues, D216O, D217O, and D218O, for temperatures between 0 and 6000 K. The nuclear-spin-dependent partition functions are obtained by the direct summation technique, involving altogether about 16 000 measured and more than nine million computed bound rovibrational energy levels for the three molecules. Reliable standard uncertainties, as a function of temperature, are estimated for each thermochemical quantity determined, including the enthalpy, the entropy, and the isobaric heat capacity of the individual nuclear-spin-equilibrated isotopologues and of heavy water. The accuracy of the heavy-water ideal-gas Cp(T) is unprecedented, below 0.01% up to 1800 K. All the thermochemical functions are reported, in 1 K increments, in the supplementary material
A high accuracy computed water line list
A computed list of HO infra-red transition frequencies and
intensities is presented. The list, BT2, was produced using a discrete variable
representation two-step approach for solving the rotation-vibration nuclear
motions. It is the most complete water line list in existence, comprising over
500 million transitions (65% more than any other list) and it is also the most
accurate (over 90% of all known experimental energy levels are within 0.3
cm of the BT2 values). Its accuracy has been confirmed by extensive
testing against astronomical and laboratory data.
The line list has been used to identify individual water lines in a variety
of objects including: comets, sunspots, a brown dwarf and the nova-like object
V838 Mon. Comparison of the observed intensities with those generated by BT2
enables physical values to be derived for these objects. The line list can also
be used to provide an opacity for models of the atmospheres of M-dwarf stars
and assign previously unknown water lines in laboratory spectra.Comment: 8 Pages, zero figures. Submitted to MNRAS. On line data at:
ftp://cdsarc.u-strasbg.fr/cats/VI/11
MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: Inter-comparison, sensitivity studies on spectral analysis settings, and error budget
In order to promote the development of the passive DOAS technique the Multi Axis DOAS – Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max Planck Institute for Chemistry in Mainz, Germany, from June to October 2013. Here, we systematically compare the differential slant column densities (dSCDs) of nitrous acid (HONO) derived from measurements of seven different instruments. We also compare the tropospheric difference of SCDs (delta SCD) of HONO, namely the difference of the SCDs for the non-zenith observations and the zenith observation of the same elevation sequence. Different research groups analysed the spectra from their own instruments using their individual fit software. All the fit errors of HONO dSCDs from the instruments with cooled large-size detectors are mostly in the range of 0.1 to 0.3 × 1015 molecules cm−2 for an integration time of 1 min. The fit error for the mini MAX-DOAS is around 0.7 × 1015 molecules cm−2. Although the HONO delta SCDs are normally smaller than 6 × 1015 molecules cm−2, consistent time series of HONO delta SCDs are retrieved from the measurements of different instruments. Both fits with a sequential Fraunhofer reference spectrum (FRS) and a daily noon FRS lead to similar consistency. Apart from the mini-MAX-DOAS, the systematic absolute differences of HONO delta SCDs between the instruments are smaller than 0.63 × 1015 molecules cm−2. The correlation coefficients are higher than 0.7 and the slopes of linear regressions deviate from unity by less than 16 % for the elevation angle of 1°. The correlations decrease with an increase in elevation angle. All the participants also analysed synthetic spectra using the same baseline DOAS settings to evaluate the systematic errors of HONO results from their respective fit programs. In general the errors are smaller than 0.3 × 1015 molecules cm−2, which is about half of the systematic difference between the real measurements.
The differences of HONO delta SCDs retrieved in the selected three spectral ranges 335–361, 335–373 and 335–390 nm are considerable (up to 0.57 × 1015 molecules cm−2) for both real measurements and synthetic spectra. We performed sensitivity studies to quantify the dominant systematic error sources and to find a recommended DOAS setting in the three spectral ranges. The results show that water vapour absorption, temperature and wavelength dependence of O4 absorption, temperature dependence of Ring spectrum, and polynomial and intensity offset correction all together dominate the systematic errors. We recommend a fit range of 335–373 nm for HONO retrievals. In such fit range the overall systematic uncertainty is about 0.87 × 1015 molecules cm−2, much smaller than those in the other two ranges. The typical random uncertainty is estimated to be about 0.16 × 1015 molecules cm−2, which is only 25 % of the total systematic uncertainty for most of the instruments in the MAD-CAT campaign. In summary for most of the MAX-DOAS instruments for elevation angle below 5°, half daytime measurements (usually in the morning) of HONO delta SCD can be over the detection limit of 0.2 × 1015 molecules cm−2 with an uncertainty of ∼ 0.9 × 1015 molecules cm−2
Analysis of the Red and Green Optical Absorption Spectrum of Gas Phase Ammonia
Room temperature NH3 absorption spectra recorded at the Kitt Peak National Solar Observatory in 1980 are analyzed. The spectra cover two regions in the visible: 15,200 - 15,700 cm-1 and 17,950 - 18,250 cm-1. These high overtone rotation-vibration spectra are analyzed using both combination differences and variational line lists. Two variational line lists were computed using the TROVE nuclear motion program: one is based on an ab initio potential energy surface (PES) while the other used a semi-empirical PES. Ab initio dipole moment surfaces are used in both cases. 95 energy levels with J = 1 - 7 are determined from analysis of the experimental spectrum in the 5vNH (red) region and 46 for 6vNH (green) region. These levels span four vibrational bands in each of the two regions, associated with stretching overtones
Isolation of a Ru(IV) side-on peroxo intermediate in the water oxidation reaction
The electrons that nature uses to reduce CO2 during photosynthesis come from water oxidation at the oxygen-evolving complex of photosystem II. Molecular catalysts have served as models to understand its mechanism, in particular the O-O bond-forming reaction, which is still not fully understood. Here we report a Ru(IV) side-on peroxo complex that serves as a 'missing link' for the species that form after the rate-determining O-O bond-forming step. The Ru(IV) side-on peroxo complex (eta(2)-1(IV)-OO) is generated from the isolated Ru(IV) oxo complex (1(IV)=O) in the presence of an excess of oxidant. The oxidation (IV) and spin state (singlet) of eta(2)-1(IV)-OO were determined by a combination of experimental and theoretical studies. O-18- and H-2-labelling studies evidence the direct evolution of O-2 through the nucleophilic attack of a H2O molecule on the highly electrophilic metal-oxo species via the formation of eta(2)-1(IV)-OO. These studies demonstrate water nucleophilic attack as a viable mechanism for O-O bond formation, as previously proposed based on indirect evidence
Measurements of double-polarized compton scattering asymmetries and extraction of the proton spin polarizabilities
The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to extract the nucleon spin polarizabilities is through polarized Compton scattering. Double-polarized Compton scattering asymmetries on the proton were measured in the Δ(1232) region using circularly polarized incident photons and a transversely polarized proton target at the Mainz Microtron. Fits to asymmetry data were performed using a dispersion model calculation and a baryon chiral perturbation theory calculation, and a separation of all four proton spin polarizabilities in the multipole basis was achieved. The analysis based on a dispersion model calculation yields γE1E1=−3.5±1.2, γM1M1=3.16±0.85, γE1M2=−0.7±1.2, and γM1E2=1.99±0.29, in units of 10−4 fm4
Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign
We present the inter-comparison of delta slant column densities (SCDs) and vertical profiles of nitrous acid (HONO) derived from measurements of different multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments and using different inversion algorithms during the Second Cabauw Inter-comparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) in September 2016 at Cabauw, the Netherlands (51.97∘ N, 4.93∘ E). The HONO vertical profiles, vertical column densities (VCDs), and near-surface volume mixing ratios are compared between different MAX-DOAS instruments and profile inversion algorithms for the first time. Systematic and random discrepancies of the HONO results are derived from the comparisons of all data sets against their median values. Systematic discrepancies of HONO delta SCDs are observed in the range of ±0.3×1015 molec. cm−2, which is half of the typical random discrepancy of 0.6×1015 molec. cm−2. For a typical high HONO delta SCD of 2×1015 molec. cm−2, the relative systematic and random discrepancies are about 15 % and 30 %, respectively. The inter-comparison of HONO profiles shows that both systematic and random discrepancies of HONO VCDs and near-surface volume mixing ratios (VMRs) are mostly in the range of ∼±0.5×1014 molec. cm−2 and ∼±0.1 ppb (typically ∼20 %). Further we find that the discrepancies of the retrieved HONO profiles are dominated by discrepancies of the HONO delta SCDs. The profile retrievals only contribute to the discrepancies of the HONO profiles by ∼5 %. However, some data sets with substantially larger discrepancies than the typical values indicate that inappropriate implementations of profile inversion algorithms and configurations of radiative transfer models in the profile retrievals can also be an important uncertainty source. In addition, estimations of measurement uncertainties of HONO dSCDs, which can significantly impact profile retrievals using the optimal estimation method, need to consider not only DOAS fit errors, but also atmospheric variability, especially for an instrument with a DOAS fit error lower than ∼3×1014 molec. cm−2. The MAX-DOAS results during the CINDI-2 campaign indicate that the peak HONO levels (e.g. near-surface VMRs of ∼0.4 ppb) often appeared in the early morning and below 0.2 km. The near-surface VMRs retrieved from the MAX-DOAS observations are compared with those measured using a co-located long-path DOAS instrument. The systematic differences are smaller than 0.15 and 0.07 ppb during early morning and around noon, respectively. Since true HONO values at high altitudes are not known in the absence of real measurements, in order to evaluate the abilities of profile inversion algorithms to respond to different HONO profile shapes, we performed sensitivity studies using synthetic HONO delta SCDs simulated by a radiative transfer model with assumed HONO profiles. The tests indicate that the profile inversion algorithms based on the optimal estimation method with proper configurations can reproduce the different HONO profile shapes well. Therefore we conclude that the features of HONO accumulated near the surface derived from MAX-DOAS measurements are expected to represent the ambient HONO profiles well
The HITRAN2016 molecular spectroscopic database
This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided
- …