599 research outputs found

    Landscape composition mediates the relationship between predator body size and pest control

    Get PDF
    Understanding the mechanisms contributing to positive relationships between predator diversity and natural pest control is fundamental to inform more effective management practices to support sustainable crop production. Predator body size can provide important insights to better understand and predict such predator-pest interactions. Yet, most studies exploring the link between predator body size and pest control have been conducted in species-poor communities under controlled environmental conditions, limiting our ability to generalize this relationship across heterogeneous landscapes. Using the community of naturally occurring ground beetles in cabbage fields, we examined how landscape composition (percent cropland) influences the size structure (mean, variance, and skewness of body size distribution) of predator communities and the subsequent effects on pest control. We found that predator communities shifted their size distribution toward larger body sizes in agriculturally dominated landscapes. This pattern arose from increasing numerical dominance of a few large-bodied species rather than an aggregated response across the community. Such landscape-driven changes in community size structure led to concomitant impacts on pest control, as the mean body size of predators was positively related to predation rates. Notably, the magnitude of pest control depended not only on the size of the dominant predators but was also strongly determined by the relative proportion of small vs. large-bodied species (i.e., skewness). Predation rates were higher in predator assemblages with even representation of small and large-bodied species relative to communities dominated by either large or small-bodied predators. Landscape composition may therefore modulate the relationship between predator body size and pest control by influencing the body size distribution of co-occurring species. Our study highlights the need to consider agricultural practices that not only boost effective predators, but also sustain a predator assemblage with a diverse set of traits to maximize overall pest control

    Lorentz invariance relations among parton distributions revisited

    Get PDF
    We revisit the derivation of the so-called Lorentz invariance relations between parton distributions. In the most important cases these relations involve twist-3 and transverse momentum dependent parton distributions. It is shown that these relations are violated if the path-ordered exponential is taken into account in the quark correlator.Comment: 4 pages, minor changes, to appear in Phys. Lett.

    Quark Solitons from Effective Action of QCD

    Full text link
    We derive an effective low energy action for QCD in 4 dimensions. The low energy dynamics is described by chiral fields transforming non-trivially under both color and flavor. We use the method of anomaly integration from the QCD action. The solitons of the theory have the quantum numbers of quarks. They are expected to be the constituent quarks of hadrons. In two dimensions our result is exact, namely the bosonic gauged action of WZW.Comment: 19 pages (phyzzx macropackage) WIS-93/110/Nov-PH, TAUP 2117-93. Some sign changes, one sentence added following eq(3.9), and one ref. [23] adde

    Semileptonic decay constants of octet baryons in the chiral quark-soliton model

    Get PDF
    Based on the recent study of the magnetic moments and axial constants within the framework of the chiral quark-soliton model, we investigate the baryon semileptonic decay constants (f1,f2)(f_1,f_2) and (g1,g2)(g_1, g_2). Employing the relations between the diagonal transition matrix elements and off-diagonal ones in the vector and axial-vector channels, we obtain the ratios of baryon semileptonic decay constants f2/f1f_2/f_1 and g1/f1g_1/f_1. The F/DF/D ratio is also discussed and found that the value predicted by the present model naturally lies between that of the Skyrme model and that of the nonrelativistic quark model. The singlet axial constant gA(0)g^{(0)}_A can be expressed in terms of the F/DF/D ratio and gA(3)g^{(3)}_A in the present model and turns out to be small. The results are compared with available experimental data and found to be in good agreement with them. In addition, the induced pseudotensor coupling constants g2/f1g_2/f_1 are calculated, the SU(3) symmetry breaking being considered. The results indicate that the effect of SU(3) symmetry breaking might play an important role for some decay modes in hyperon semileptonic decay.Comment: 16 pages, RevTeX is used. No figure. Accepted for publication in Phys. Rev.

    Spin-dependent twist-4 matrix elements from the instanton vacuum: Flavor-singlet and nonsinglet

    Get PDF
    We estimate the twist-4 spin-1 nucleon matrix element f_2 in an instanton-based description of the QCD vacuum. In addition to the flavor-nonsinglet we compute also the flavor-singlet matrix element, which appears in next-to-leading order of the (1/N_c)-expansion. The corresponding twist-3 spin-2 matrix elements d_2 are suppressed in the packing fraction of the instanton medium, (\bar \rho)/(\bar R) << 1. We use our results to estimate the leading (1/Q^2) power corrections to the first moment of the proton and neutron spin structure functions G_1, as well as the intrinsic charm contribution to the nucleon spin.Comment: 17 pages, 4 eps figures include

    The Deuteron Spin-dependent Structure Function g1d and its First Moment

    Get PDF
    We present a measurement of the deuteron spin-dependent structure function g1d based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the first moment of g1d(x), and for the matrix element of the singlet axial current, a0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function Delta G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3 (GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3 in absolute value.Comment: fits redone using MRST2004 instead of MRSV1998 for G(x), correlation matrix adde

    Leading order determination of the gluon polarisation from DIS events with high-p_T hadron pairs

    Get PDF
    We present a determination of the gluon polarisation Delta g/g in the nucleon, based on the longitudinal double-spin asymmetry of DIS events with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam scattering off a polarised ^6LiD target. The gluon polarisation is evaluated by a Neural Network approach for three intervals of the gluon momentum fraction x_g covering the range 0.04 < x_g < 0.27. The values obtained at leading order in QCD do not show any significant dependence on x_g. Their average is Delta g/g = 0.125 +/- 0.060 (stat.) +/- 0.063 (syst.) at x_g=0.09 and a scale of mu^2 = 3 (GeV/c)^2.Comment: 13 pages, 6 figures and 3 table

    Photoproduction of mesons off nuclei

    Full text link
    Recent results for the photoproduction of mesons off nuclei are reviewed. These experiments have been performed for two major lines of research related to the properties of the strong interaction. The investigation of nucleon resonances requires light nuclei as targets for the extraction of the isospin composition of the electromagnetic excitations. This is done with quasi-free meson photoproduction off the bound neutron and supplemented with the measurement of coherent photoproduction reactions, serving as spin and/or isospin filters. Furthermore, photoproduction from light and heavy nuclei is a very efficient tool for the study of the interactions of mesons with nuclear matter and the in-medium properties of hadrons. Experiments are currently rapidly developing due to the combination of high quality tagged (and polarized) photon beams with state-of-the-art 4pi detectors and polarized targets
    corecore