2,141 research outputs found
Recommended from our members
Impact of parametrized nonorographic gravity wave drag on stratosphere-troposphere coupling in the northern and southern hemispheres
The impact of parametrized nonorographic gravity wave drag (NOGWD) on the stratosphere-troposphere dynamical coupling in atmospheric models is relatively unexplored. Using the European Centre for Medium-Range Weather Forecasts Integrated Forecast System, we find that changes in NOGWD strength have a substantial impact on the tropospheric eddy-driven jet (EDJ) in both hemispheres, but the sense of the impact is opposite in the two hemispheres. In the Northern Hemisphere the impact occurs via changes in the amplitude and persistence of stratospheric anomalies. In the Southern Hemisphere (SH) it occurs instead via differences in the sensitivity of the EDJ to a given stratospheric anomaly, arising from changes in the seasonal cycle leading up to the polar vortex breakdown. Increasing NOGWD eliminates the springtime phase of the SH tropospheric semiannual oscillation (SAO), resulting in a more equatorward annual-mean EDJ, and showing that the SAO cannot be explained entirely from tropospheric mechanisms
Recommended from our members
Report on Stratosphere Task Force
Recognising the importance of the stratosphere for skilful seasonal and sub-seasonal prediction, the Stratosphere Task Force was set up in 2016 to improve the representation of the stratosphere in ECMWF forecast and analysis systems. This report synthesizes the most notable findings of the Task Force and provides recommendations for the way forward. The main focus is on: 1) Global-mean temperature biases; 2) Horizontal resolution sensitivity of the mid- to lower stratospheric temperatures; 3) Stratospheric meridional circulation and polar vortex variability; 4) Extratropical lower stratospheric cold temperature bias; 5) New sponge design; and, 6) Representation of tropical winds
Sensitivity and variability redux in hot-Jupiter flow simulations
We revisit the issue of sensitivity to initial flow and intrinsic variability in hot-Jupiter atmospheric flow simulations, originally investigated by Cho et al. (2008) and Thrastarson & Cho (2010). The flow in the lower region (~1 to 20 MPa) `dragged' to immobility and uniform temperature on a very short timescale, as in Liu & Showman (2013), leads to effectively a complete cessation of variability as well as sensitivity in three-dimensional (3D) simulations with traditional primitive equations. Such momentum (Rayleigh) and thermal (Newtonian) drags are, however, ad hoc for 3D giant planet simulations. For 3D hot-Jupiter simulations, which typically already employ strong Newtonian drag in the upper region, sensitivity is not quenched if only the Newtonian drag is applied in the lower region, without the strong Rayleigh drag: in general, both sensitivity and variability persist if the two drags are not applied concurrently in the lower region. However, even when the drags are applied concurrently, vertically-propagating planetary waves give rise to significant variability in the ~0.05 to 0.5 MPa region, if the vertical resolution of the lower region is increased (e.g. here with 1000 layers for the entire domain). New observations on the effects of the physical setup and model convergence in ‘deep’ atmosphere simulations are also presented
Recommended from our members
Sensitivity of the Brewer-Dobson circulation and polar vortex variability to parameterized nonorographic gravity wave drag in a high-resolution atmospheric model
The role of parametrized nonorographic gravity wave drag (NOGWD) and its seasonal interaction with the resolved wave drag in the stratosphere has been extensively studied in low-resolution (coarser than 1.9 x 2.5 degrees) climate models but is comparatively unexplored in higher-resolution models. Using the European Centre for Medium-Range Weather Forecasts Integrated Forecast System at 0.7 x 0.7 degrees resolution, the wave drivers of the Brewer-Dobson circulation are diagnosed and the circulation sensitivity to the NOGW launch flux is explored. NOGWs are found to account for nearly 20% of the lower stratospheric Southern Hemisphere (SH) polar cap downwelling and for less than 10% of the lower-stratospheric tropical upwelling and Northern Hemisphere (NH) polar cap downwelling. Despite these relatively small numbers, there are complex interactions between NOGWD and resolved wave drag, in both polar regions. Seasonal cycle analysis reveals a temporal offset in the resolved and parametrized wave interaction: The NOGWD response to altered source fluxes is largest in mid-winter, while the resolved wave response is largest in the late winter and spring. This temporal offset is especially prominent in the SH. The impact of NOGWD on sudden stratospheric warming (SSW) life-cycles and the final warming date in the SH is also investigated. An increase in NOGWD leads to an increase in SSW frequency, reduction in amplitude and persistence, and an earlier recovery of the stratopause following a SSW event. The SH final warming date is also brought forward when NOGWD is increased. Thus, NOGWD is still found to be a very important parameterization for stratospheric dynamics even in a high-resolution atmospheric model
Methane in the atmosphere of the transiting hot Neptune GJ436b?
We present an analysis of seven primary transit observations of the hot
Neptune GJ436b at 3.6, 4.5 and m obtained with the Infrared Array Camera
(IRAC) on the Spitzer Space Telescope. After correcting for systematic effects,
we fitted the light curves using the Markov Chain Monte Carlo technique.
Combining these new data with the EPOXI, HST and ground-based  and
 published observations, the range m can be covered. Due to
the low level of activity of GJ436, the effect of starspots on the combination
of transits at different epochs is negligible at the accuracy of the dataset.
Representative climate models were calculated by using a three-dimensional,
pseudo-spectral general circulation model with idealised thermal forcing.
Simulated transit spectra of GJ436b were generated using line-by-line radiative
transfer models including the opacities of the molecular species expected to be
present in such a planetary atmosphere. A new, ab-initio calculated, linelist
for hot ammonia has been used for the first time. The photometric data observed
at multiple wavelengths can be interpreted with methane being the dominant
absorption after molecular hydrogen, possibly with minor contributions from
ammonia, water and other molecules. No clear evidence of carbon monoxide and
dioxide is found from transit photometry. We discuss this result in the light
of a recent paper where photochemical disequilibrium is hypothesised to
interpret secondary transit photometric data. We show that the emission
photometric data are not incompatible with the presence of abundant methane,
but further spectroscopic data are desirable to confirm this scenario.Comment: 19 pages, 10 figures, 1 table, Astrophysical Journal in pres
Environmental screening tools for assessment of infrastructure plans based on biodiversity preservation and global warming (PEIT, Spain).
Most Strategic Environmental Assessment (SEA) research has been concerned with SEA as a procedure, and there have been relatively few developments and tests of analytical methodologies. The first stage of the SEA is the ‘screening’, which is the process whereby a decision is taken on whether or not SEA is required for a particular programme or plan. The effectiveness of screening and SEA procedures will depend on how well the assessment fits into the planning from the early stages of the decision-making process. However, it is difficult to prepare the environmental screening for an infrastructure plan involving a whole country. To be useful, such methodologies must be fast and simple. We have developed two screening tools which would make it possible to estimate promptly the overall impact an infrastructure plan might have on biodiversity and global warming for a whole country, in order to generate planning alternatives, and to determine whether or not SEA is required for a particular infrastructure plan
Intercomparison of general circulation models for hot extrasolar planets
We compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ di↵erent numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ‘cubed-sphere’ grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: 1) steady-state, 2) nonlinearly evolving baroclinic wave, and 3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should—except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in pseudospectral models (only). However, exact numerical convergence is still not achieved across the pseudospectral models: amplitudes and phases are observably di↵erent. When subject to a typical ‘hot-Jupiter’-like forcing, all five models show quantitatively di↵erent behavior—although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, pseudospectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst
Zonal-mean circulation response to reduced air-sea momentum roughness
The impact of uncertainties in surface layer physics on the atmospheric general circulation is comparatively unexplored. Here the sensitivity of the zonal-mean circulation to reduced air-sea momentum roughness (Z0m) at low flow speed is investigated with the Community Atmosphere Model (CAM3). In an aquaplanet framework with prescribed sea surface temperatures, the response to reduced Z0m resembles the La Niña minus El Niño response to El Niño Southern Oscillation variability with: i) a poleward shift of the mid-latitude westerlies extending all the way to the surface; ii) a weak poleward shift of the subtropical descent region; and iii) a weakening of the Hadley circulation, which is generally also accompanied by a poleward shift of the inter-tropical convergence zone (ITCZ) and the tropical surface easterlies. Mechanism-denial experiments show this response to be initiated by the reduction of tropical latent and sensible heat fluxes, effected by reducing Z0m. The circulation response is elucidated by considering the effect of the tropical energy fluxes on the Hadley circulation strength, the upper tropospheric critical layer latitudes, and the lower-tropospheric baroclinic eddy forcing. The ITCZ shift is understood via moist static energy budget analysis in the tropics. The circulation response to reduced Z0m carries over to more complex setups with seasonal cycle, full complexity of atmosphere-ice-land-ocean interaction, and a slab ocean lower boundary condition. Hence, relatively small changes in the surface parameterization parameters can lead to a significant circulation response
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7  5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
  published version, figures at
  http://aliceinfo.cern.ch/ArtSubmission/node/161
- …
