70 research outputs found

    Miniature Eye Movements Enhance Fine Spatial Details

    Full text link
    Our eyes are constantly in motion. Even during visual fixation, small eye movements continually jitter the location of gaze. It is known that visual percepts tend to fade when retinal image motion is eliminated in the laboratory. However, it has long been debated whether, during natural viewing, fixational eye movements have functions in addition to preventing the visual scene from fading. In this study, we analysed the influence in humans of fixational eye movements on the discrimination of gratings masked by noise that has a power spectrum similar to that of natural images. Using a new method of retinal image stabilization18, we selectively eliminated the motion of the retinal image that normally occurs during the intersaccadic intervals of visual fixation. Here we show that fixational eye movements improve discrimination of high spatial frequency stimuli, but not of low spatial frequency stimuli. This improvement originates from the temporal modulations introduced by fixational eye movements in the visual input to the retina, which emphasize the high spatial frequency harmonics of the stimulus. In a natural visual world dominated by low spatial frequencies, fixational eye movements appear to constitute an effective sampling strategy by which the visual system enhances the processing of spatial detail.National Institutes of Health; National Science Foundatio

    Mindfulness-based stress reduction in patients with interstitial lung diseases: a pilot, single-centre observational study on safety and efficacy

    Get PDF
    open11siBackground Chronic, progressive respiratory symptoms are associated with great psychological and emotional impact in patients suffering from interstitial lung disease (ILD). This single-centre pilot study evaluated for the first time the safety, feasibility and efficacy of a Mindfulness Based Stress Reduction Program (MBSR) in a group of patients with ILD. Methods Prospective observational study set in a university hospital ILD outpatient clinic. Nineteen patients with different ILDs were recruited 2 months prior to the start of the 8-week MBSR program and followed up for 12 months. Primary outcomes were program safety and feasibility, while secondary outcomes were changes in moods and stress (assessed by Profile Of Mood State (POMS) and Perceived Stress Scale (PSS) questionnaires), symptoms (Shortness Of Breath (SOB) and Cough And Sputum Assessment (CASA-Q) questionnaires), lung function and exercise tolerance at 12 months. Results Two patients (10.5%) dropped out in the observational period before the start of the MBSR intervention because of non-respiratory causes. All 17 patients who entered the 8-week MBSR program managed to complete it with an adherence average of eight sessions of nine. No adverse events related to the mindfulness training were reported. Statistically significant improvements in the POMS total score and in several individual items of POMS and PSS were observed throughout the study. However, respiratory questionnaire scores, lung function and exercise tolerance did not show a significant difference over time. Conclusions An MBSR program appears to be safe and feasible in patients with ILD, and might affect perceived moods and stress producing a positive and lasting improvement in several stress-related negative domains. These findings pave the way to larger (possibly multicentre), randomised, controlled confirmatory trials.openSgalla, Giacomo; Cerri, Stefania; Ferrari, Roberto; Ricchieri, Maria Pia; Poletti, Stefano; Ori, Margherita; Garuti, Martina; Montanari, Gloria; Luppi, Fabrizio; Petropulacos, Kyriakoula; Richeldi, LucaSgalla, Giacomo; Cerri, Stefania; Ferrari, Roberto; Ricchieri, Maria Pia; Poletti, Stefano; Ori, Margherita; Garuti, Martina; Montanari, Gloria; Luppi, Fabrizio; Petropulacos, Kyriakoula; Richeldi, Luc

    Heparin Induces Apoptosis in Lymphocytes from B-cell Chronic Lymphocytic Leukemia.

    Get PDF
    It has been shown that glycosaminoglycans play a role in the regulation of immune response. In particular, heparin exerts an antiproliferative and apoptotic action in different cellular systems. In this study we evaluate whether heparin can also induce a naturally occurring programmed cell death in lymphocytes from B-chronic lymphocytic leukemia (B-CLL), a neoplastic lineage where apoptosis is blocked by the expression of the proto-oncogene bc1-2. Peripheral blood lymphocytes (PBL) from 7 cases of B-CLL patients in different stages were cultured with three different heparin sodium concentrations for 4 days. Apoptosis was evaluated by agarose gel electrophoresis and by cytofluorimetric analysis. Bcl-2 expression was tested by flow cytometric analysis and immunohistochemistry on cytospin preparations. Agarose gel electrophoresis showed the characteristic DNA fragmentation pattern of apoptosis in all the cases of B-CLL stage III and IV after heparin incubation. DNA from normal and neoplastic lymphocytes cultured without heparin did not undergo spontaneous apoptosis. Cytofluorimetric analysis confirmed the agarose gel pattern and found a level of apoptosis over 50% after culture of neoplastic PBL with heparin. In these cases bcl-2 expression was found to be significantly reduced after heparin incubation when comparing to bcl-2 level before incubation. Our data adds further evidence regarding the potential role of heparin in oncogene inhibition and in apoptosis induction. In particular, the induction of apoptosis in neoplastic lymphocytes by heparin may have a role in the complicated field of interactions between the immune system and the blood vessels by glycosaminoglycans

    An Electroactive and Self-Assembling Bio-Ink, based on Protein-Stabilized Nanoclusters and Graphene, for the Manufacture of Fully Inkjet-Printed Paper-Based Analytical Devices

    Get PDF
    Hundreds of new electrochemical sensors are reported in literature every year. However, only a few of them makes it to the market. Manufacturability, or rather the lack of it, is the parameter that dictates if new sensing technologies will remain forever in the laboratory in which they are conceived. Inkjet printing is a low-cost and versatile technique that can facilitate the transfer of nanomaterial-based sensors to the market. Herein, an electroactive and self-assembling inkjet-printable ink based on protein-nanomaterial composites and exfoliated graphene is reported. The consensus tetratricopeptide proteins (CTPRs), used to formulate this ink, are engineered to template and coordinate electroactive metallic nanoclusters (NCs), and to self-assemble upon drying, forming stable films. The authors demonstrate that, by incorporating graphene in the ink formulation, it is possible to dramatically improve the electrocatalytic properties of the ink, obtaining an efficient hybrid material for hydrogen peroxide (H2O2) detection. Using this bio-ink, the authors manufactured disposable and environmentally sustainable electrochemical paper-based analytical devices (ePADs) to detect H2O2, outperforming commercial screen-printed platforms. Furthermore, it is demonstrated that oxidoreductase enzymes can be included in the formulation, to fully inkjet-print enzymatic amperometric biosensors ready to use

    Graphene-Paper-Based Electrodes on Plastic and Textile Supports as New Platforms for Amperometric Biosensing

    Get PDF
    The possibility of exfoliating graphite into graphene sheets allows the researchers to produce a material, termed “graphene paper” (G-paper), conductive as graphite but more flexible and processable. G-paper is already used for electronic applications, like conductors, antennas, and heaters, outperforming metal conductors thanks to its high flexibility, lightness, chemical stability, and compatibility with polymeric substrates. Here, the effectiveness in the use of G-paper for the realization of electrodes on flexible plastic substrates and textiles, and their applicability as amperometric sensors are demonstrated. The performance of these devices is compared with commercial platforms made of carbon-based inks, finding that they outperform commercial devices in sensing nicotinamide adenine dinucleotide (NADH), a key molecule for enzymatic biosensing; the electrodes can achieve state-of-the-art sensitivity (107.2 μA mm−1 cm−2) and limit of detection (0.6 7 10−6 m) with no need of additional functionalization. Thanks to this property, the stable deposition of a suitable enzyme, namely lactate dehydrogenase, on the electrode surface is used as a proof of concept of the applicability of this new platform for the realization of a biosensor. The possibility of having a single material suitable for antennas, electronics, and now sensing opens new opportunities for smart fabrics in wearable electronic applications

    Effect of Water on a Hydrophobic Deep Eutectic Solvent

    Get PDF
    Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects.</p

    Structured reporting for fibrosing lung disease: a model shared by radiologist and pulmonologist

    Get PDF
    Objectives: To apply the Delphi exercise with iterative involvement of radiologists and pulmonologists with the aim of defining a structured reporting template for high-resolution computed tomography (HRCT) of patients with fibrosing lung disease (FLD). Methods: The writing committee selected the HRCT criteria\ue2\u80\u94the Delphi items\ue2\u80\u94for rating from both radiology panelists (RP) and pulmonology panelists (PP). The Delphi items were first rated by RPs as \ue2\u80\u9cessential\ue2\u80\u9d, \ue2\u80\u9coptional\ue2\u80\u9d, or \ue2\u80\u9cnot relevant\ue2\u80\u9d. The items rated \ue2\u80\u9cessential\ue2\u80\u9d by &lt; 80% of the RP were selected for the PP rating. The format of reporting was rated by both RP and PP. Results: A total of 42 RPs and 12 PPs participated to the survey. In both Delphi round 1 and 2, 10/27 (37.7%) items were rated \ue2\u80\u9cessential\ue2\u80\u9d by more than 80% of RP. The remaining 17/27 (63.3%) items were rated by the PP in round 3, with 2/17 items (11.7%) rated \ue2\u80\u9cessential\ue2\u80\u9d by the PP. PP proposed additional items for conclusion domain, which were rated by RPs in the fourth round. Poor consensus was observed for the format of reporting. Conclusions: This study provides a template for structured report of FLD that features essential items as agreed by expert thoracic radiologists and pulmonologists

    Revisiting the Effects of Gender Diversity in Small Groups on Divergent Thinking: A Large-Scale Study Using Synchronous Electronic Brainstorming

    Get PDF
    Numerous studies have examined the effects of gender diversity in groups on creative performance, and no clear effect has been identified. Findings depend on situational cues making gender diversity more or less salient in groups. A large-scale study on two cohorts (N = 2,261) was conducted among business students to examine the impact of the gender diversity in small groups on divergent thinking in an idea-generation task performed by synchronous electronic brainstorming. Participants were automatically randomized in three- or four-member groups to generate ideas during 10 min on a gendered or neutral task. Then, five categories of groups where the proportion of men/women in groups varied from three/four men to three/four women were compared to examine creative performance on three divergent thinking measures (fluency, flexibility, and originality). A Multivariate Generalized Linear Mixed Model (mGLMM) showed greater fluency in all-women groups than in other groups (except mixed-gender groups composed of two men and two women), and more specifically “solo” groups composed of a single woman/man among a majority of men/women. For flexibility and originality, the superiority of all-women groups was found only in comparison to “solo” groups composed of a single woman. As gender differences are more salient in “solo” groups than in other groups faultlines may appear in groups, leading to a deleterious impact on creative performance

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe
    corecore