144 research outputs found

    Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study

    Get PDF
    BACKGROUND: The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of-and expansion on-the 2014 analysis, which reported 80 million (95% CI 64-103) viraemic infections in 2013. METHODS: We developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data. FINDINGS: Models were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8-1·1) in 2015, corresponding to 71·1 million (62·5-79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively). INTERPRETATION: The global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections. FUNDING: John C Martin Foundation

    Hepatitis D double reflex testing of all hepatitis B carriers in low-HBV- and high-HBV/HDV-prevalence countries

    Get PDF
    Hepatitis D virus (HDV) infection occurs as a coinfection with hepatitis B and increases the risk of hepatocellular carcinoma, decompensated cirrhosis, and mortality compared to hepatitis B virus (HBV) monoinfection. Reliable estimates of the prevalence of HDV infection and disease burden are essential to formulate strategies to find coinfected individuals more effectively and efficiently. The global prevalence of HBV infections was estimated to be 262,240,000 in 2021. Only 1,994,000 of the HBV infections were newly diagnosed in 2021, with more than half of the new diagnoses made in China. Our initial estimates indicated a much lower prevalence of HDV antibody (anti-HDV) and HDV RNA positivity than previously reported in published studies. Accurate estimates of HDV prevalence are needed. The most effective method to generate estimates of the prevalence of anti-HDV and HDV RNA positivity and to find undiagnosed individuals at the national level is to implement double reflex testing. This requires anti-HDV testing of all hepatitis B surface antigen-positive individuals and HDV RNA testing of all anti-HDV-positive individuals. This strategy is manageable for healthcare systems since the number of newly diagnosed HBV cases is low. At the global level, a comprehensive HDV screening strategy would require only 1,994,000 HDV antibody tests and less than 89,000 HDV PCR tests. Double reflex testing is the preferred strategy in countries with a low prevalence of HBV and those with a high prevalence of both HBV and HDV. For example, in the European Union and North America only 35,000 and 22,000 cases, respectively, will require anti-HDV testing annually

    Adjusted estimate of the prevalence of hepatitis delta virus in 25 countries and territories.

    No full text
    BACKGROUND & AIMS: Hepatitis delta virus (HDV) is a satellite RNA virus that requires the hepatitis B virus (HBV) for assembly and propagation. Individuals infected with HDV progress to advanced liver disease faster than HBV-monoinfected individuals. Recent studies have estimated the global prevalence of anti-HDV antibodies among the HBV-infected population to be 5-15%. This study aimed to better understand HDV prevalence at the population level in 25 countries/territories. METHODS: We conducted a literature review to determine the prevalence of anti-HDV and HDV RNA in hepatitis B surface antigen (HBsAg)-positive individuals in 25 countries/territories. Virtual meetings were held with experts from each setting to discuss the findings and collect unpublished data. Data were weighted for patient segments and regional heterogeneity to estimate the prevalence in the HBV-infected population. The findings were then combined with The Polaris Observatory HBV data to estimate the anti-HDV and HDV RNA prevalence in each country/territory at the population level. RESULTS: After adjusting for geographical distribution, disease stage and special populations, the anti-HDV prevalence among the HBsAg+ population changed from the literature estimate in 19 countries. The highest anti-HDV prevalence was 60.1% in Mongolia. Once adjusted for the size of the HBsAg+ population and HDV RNA positivity rate, China had the highest absolute number of HDV RNA+ cases. CONCLUSIONS: We found substantially lower HDV prevalence than previously reported, as prior meta-analyses primarily focused on studies conducted in groups/regions that have a higher probability of HBV infection: tertiary care centers, specific risk groups or geographical regions. There is large uncertainty in HDV prevalence estimates. The implementation of reflex testing would improve estimates, while also allowing earlier linkage to care for HDV RNA+ individuals. The logistical and economic burden of reflex testing on the health system would be limited, as only HBsAg+ cases would be screened. IMPACT AND IMPLICATIONS: There is a great deal of uncertainty surrounding the prevalence of hepatitis delta virus among people living with hepatitis B virus at the population level. In this study, we aimed to better understand the burden in 25 countries and territories, to refine techniques that can be used in future analyses. We found a lower prevalence in the majority of places studied than had been previously reported. These data can help inform policy makers on the need to screen people living with hepatitis B virus to find those coinfected with hepatitis delta virus and at high risk of progression, while also highlighting the pitfalls that other researchers have often fallen into

    Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study

    Full text link
    BACKGROUND The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate viral hepatitis by 2030. Although no virological cure exists for hepatitis B virus (HBV) infection, existing therapies to control viral replication and prophylaxis to minimise mother-to-child transmission make elimination of HBV feasible. We aimed to estimate the national, regional, and global prevalence of HBsAg in the general population and in the population aged 5 years in 2016, as well as coverage of prophylaxis, diagnosis, and treatment. METHODS In this modelling study, we used a Delphi process that included a literature review in PubMed and Embase, followed by interviews with experts, to quantify the historical epidemiology of HBV infection. We then used a dynamic HBV transmission and progression model to estimate the country-level and regional-level prevalence of HBsAg in 2016 and the effect of prophylaxis and treatment on disease burden. FINDINGS We developed models for 120 countries, 78 of which were populated with data approved by experts. Using these models, we estimated that the global prevalence of HBsAg in 2016 was 3·9% (95% uncertainty interval [UI] 3·4-4·6), corresponding to 291 992 000 (251 513 000-341 114 000) infections. Of these infections, around 29 million (10%) were diagnosed, and only 4·8 million (5%) of 94 million individuals eligible for treatment actually received antiviral therapy. Around 1·8 (1·6-2·2) million infections were in children aged 5 years, with a prevalence of 1·4% (1·2-1·6). We estimated that 87% of infants had received the three-dose HBV vaccination in the first year of life, 46% had received timely birth-dose vaccination, and 13% had received hepatitis B immunoglobulin along with the full vaccination regimen. Less than 1% of mothers with a high viral load had received antiviral therapy to reduce mother-to-child transmission. INTERPRETATION Our estimate of HBV prevalence in 2016 differs from previous studies, potentially because we took into account the effect of infant prophylaxis and early childhood vaccination, as well as changing prevalence over time. Although some regions are well on their way to meeting prophylaxis and prevalence targets, all regions must substantially scale-up access to diagnosis and treatment to meet the global targets

    The case for simplifying and using absolute targets for viral hepatitis elimination goals

    No full text
    The 69th World Health Assembly endorsed the Global Health Sector Strategy for Viral Hepatitis, embracing a goal to eliminate hepatitis infection as a public health threat by 2030. This was followed by the World Health Organization's (WHO) global targets for the care and management of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. These announcements and targets were important in raising awareness and calling for action; however, tracking countries' progress towards these elimination goals has provided insights to the limitations of these targets. The existing targets compare a country's progress relative to its 2015 values, penalizing countries who started their programmes prior to 2015, countries with a young population, or countries with a low prevalence. We recommend that (1) WHO simplify the hepatitis elimination targets, (2) change to absolute targets and (3) allow countries to achieve these disease targets with their own service coverage initiatives that will have the maximum impact. The recommended targets are as follows: reduce HCV new chronic cases to ≤5 per 100 000, reduce HBV prevalence among 1-year-olds to ≤0.1%, reduce HBV and HCV mortality to ≤5 per 100 000, and demonstrate HBV and HCV year-to-year decrease in new HCV- and HBV-related HCC cases. The objective of our recommendations is not to lower expectations or diminish the hepatitis elimination standards, but to provide clearer targets that recognize the past and current elimination efforts by countries, help measure progress towards true elimination, and motivate other countries to follow suit

    Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: a modelling study

    Full text link
    BACKGROUND Since the release of the first global hepatitis elimination targets in 2016, and until the COVID-19 pandemic started in early 2020, many countries and territories were making progress toward hepatitis C virus (HCV) elimination. This study aims to evaluate HCV burden in 2020, and forecast HCV burden by 2030 given current trends. METHODS This analysis includes a literature review, Delphi process, and mathematical modelling to estimate HCV prevalence (viraemic infection, defined as HCV RNA-positive cases) and the cascade of care among people of all ages (age ≥0 years from birth) for the period between Jan 1, 2015, and Dec 31, 2030. Epidemiological data were collected from published sources and grey literature (including government reports and personal communications) and were validated among country and territory experts. A Markov model was used to forecast disease burden and cascade of care from 1950 to 2050 for countries and territories with data. Model outcomes were extracted from 2015 to 2030 to calculate population-weighted regional averages, which were used for countries or territories without data. Regional and global estimates of HCV prevalence, cascade of care, and disease burden were calculated based on 235 countries and territories. FINDINGS Models were built for 110 countries or territories: 83 were approved by local experts and 27 were based on published data alone. Using data from these models, plus population-weighted regional averages for countries and territories without models (n=125), we estimated a global prevalence of viraemic HCV infection of 0·7% (95% UI 0·7-0·9), corresponding to 56·8 million (95% UI 55·2-67·8) infections, on Jan 1, 2020. This number represents a decrease of 6·8 million viraemic infections from a 2015 (beginning of year) prevalence estimate of 63·6 million (61·8-75·8) infections (0·9% [0·8-1·0] prevalence). By the end of 2020, an estimated 12·9 million (12·5-15·4) people were living with a diagnosed viraemic infection. In 2020, an estimated 641 000 (623 000-765 000) patients initiated treatment. INTERPRETATION At the beginning of 2020, there were an estimated 56·8 million viraemic HCV infections globally. Although this number represents a decrease from 2015, our forecasts suggest we are not currently on track to achieve global elimination targets by 2030. As countries recover from COVID-19, these findings can help refocus efforts aimed at HCV elimination. FUNDING John C Martin Foundation, Gilead Sciences, AbbVie, ZeShan Foundation, and The Hepatitis Fund

    Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: a modelling study.

    No full text
    BACKGROUND: Since the release of the first global hepatitis elimination targets in 2016, and until the COVID-19 pandemic started in early 2020, many countries and territories were making progress toward hepatitis C virus (HCV) elimination. This study aims to evaluate HCV burden in 2020, and forecast HCV burden by 2030 given current&nbsp;trends. METHODS: This analysis includes a literature review, Delphi process, and mathematical modelling to estimate HCV prevalence (viraemic infection, defined as HCV RNA-positive cases) and the cascade of care among people of all ages (age ≥0 years from birth) for the period between Jan 1, 2015, and Dec 31, 2030. Epidemiological data were collected from published sources and grey literature (including government reports and personal communications) and were validated among country and territory experts. A Markov model was used to forecast disease burden and cascade of care from 1950 to 2050 for countries and territories with data. Model outcomes were extracted from 2015 to 2030 to calculate population-weighted regional averages, which were used for countries or territories without data. Regional and global estimates of HCV prevalence, cascade of care, and disease burden were calculated based on 235 countries and&nbsp;territories. FINDINGS: Models were built for 110 countries or territories: 83 were approved by local experts and 27 were based on published data alone. Using data from these models, plus population-weighted regional averages for countries and territories without models (n=125), we estimated a global prevalence of viraemic HCV infection of 0·7% (95% UI 0·7-0·9), corresponding to 56·8 million (95% UI 55·2-67·8) infections, on Jan 1, 2020. This number represents a decrease of 6·8 million viraemic infections from a 2015 (beginning of year) prevalence estimate of 63·6 million (61·8-75·8) infections (0·9% [0·8-1·0] prevalence). By the end of 2020, an estimated 12·9 million (12·5-15·4) people were living with a diagnosed viraemic infection. In 2020, an estimated 641 000 (623 000-765 000) patients initiated&nbsp;treatment. INTERPRETATION: At the beginning of 2020, there were an estimated 56·8 million viraemic HCV infections globally. Although this number represents a decrease from 2015, our forecasts suggest we are not currently on track to achieve global elimination targets by 2030. As countries recover from COVID-19, these findings can help refocus efforts aimed at HCV&nbsp;elimination. FUNDING: John C Martin Foundation, Gilead Sciences, AbbVie, ZeShan Foundation, and The Hepatitis&nbsp;Fund.</p
    corecore