11 research outputs found

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Thermal alteration of terrestrial palynomorphs in mid-Cretaceous organic-rich mudstones intruded by igneous sill (Newfoundland Margin, ODP Hole 1276A)

    No full text
    Most approaches used to reconstruct thermal alteration of sediments necessitate advanced, relatively expensive analytical techniques. We have evaluated the fidelity of a less costly, relatively simple approach of visually assessing sporomorph colours to determine thermal alteration. The sporomorph-based thermal alteration estimates were compared to vitrinite reflectance data from the same samples. As study material, we selected a succession of mid-Cretaceous (Albian) organic-rich clay- and siltstones intruded by a diabase sill that was recovered from Ocean Drilling Program (ODP) Hole 1276A, off Newfoundland. Six sporomorph groups (SG), each consisting of morphologically well-defined, easily identifiable constituents with long stratigraphic ranges, were individually evaluated for their thermal alteration signals. These groups are: (1) leiotrilete spores of the genera Biretisporites, Cyathidites, Deltoidospora, Dictyophyllidites, Gleicheniidites, and Leiotriletes (SG-1; subdivided into three subgroups SG-1a, SG-1b and SG-1c with sporoderm thicknesses <1 ?m, 1–1.5 ?m and >1.5 ?m, respectively); (2) trilete, rugulate spores of the genera Camerozonosporites and Lycopodiacidites (SG-2); (3) trilete, striate spores of the genera Appendicisporites, Cicatricosisporites and Plicatella (SG-3); and (4) the gymnosperm-pollen taxon Classopollis torosus (SG-4). Sporomorph colours were determined using Munsell colour standards under reproducible optical conditions. To minimize the potential influence of reworked specimens on the dataset, only the lightest 50% of all counted specimens per sporomorph group were evaluated for their thermal alteration signals. The thermal alteration estimates from all sporomorph groups yield an internally consistent picture that is compatible with vitrinite reflectance data from the same samples. They indicate that downhole thermal alteration does not increase until 20 m above the igneous sill. A steep rise occurs only at 4.23 m above the sill, and thermal alteration peaks in the sample closest (2.17 m) to the sill. However, the different sporomorph groups exhibit varying degrees of fidelity with respect to deciphering thermal alteration. Factors influencing the precision of the thermal alteration signal include sporoderm thickness, character of surface ornamentation, resistance to reworking, and abundance in the sample material. Highest correlations with vitrinite reflectance data are observed for the thermal alteration values from SG-1b (R=0.82), SG-3 (R=0.80) and SG-4 (R=0.80). Hence, these groups are best suited for a sporomorph-based approach to reconstructing the thermal history of sediments. The highest correlation coefficient with vitrinite reflectance data is registered for SG-1b, the subgroup with the least variability of sporoderm thickness and the highest abundance in the sample material. This indicates that the study of morphologically similar, highly abundant specimens with strongly constrained sporoderm thickness variations yields the best results for the reconstruction of thermal alteration

    The Einstein@Home Gamma-ray Pulsar Survey. II. Source Selection, Spectral Analysis, and Multiwavelength Follow-up

    No full text
    International audienceWe report on the analysis of 13 gamma-ray pulsars discovered in the Einstein@Home blind search survey using Fermi Large Area Telescope (LAT) Pass 8 data. The 13 new gamma-ray pulsars were discovered by searching 118 unassociated LAT sources from the third LAT source catalog (3FGL), selected using the Gaussian Mixture Model machine-learning algorithm on the basis of their gamma-ray emission properties being suggestive of pulsar magnetospheric emission. The new gamma-ray pulsars have pulse profiles and spectral properties similar to those of previously detected young gamma-ray pulsars. Follow-up radio observations have revealed faint radio pulsations from two of the newly discovered pulsars and enabled us to derive upper limits on the radio emission from the others, demonstrating that they are likely radio-quiet gamma-ray pulsars. We also present results from modeling the gamma-ray pulse profiles and radio profiles, if available, using different geometric emission models of pulsars. The high discovery rate of this survey, despite the increasing difficulty of blind pulsar searches in gamma rays, suggests that new systematic surveys such as presented in this article should be continued when new LAT source catalogs become available

    Characterization of a subset of large amplitude noise events in VIRGO science run 1 (VSR1)

    No full text
    corecore