628 research outputs found

    The role of gibberellin in the reproductive development of Arabidopsis thaliana

    Get PDF
    The plant hormone gibberellin (GA) promotes several processes during Arabidopsis reproductive development, including the transition to flowering, floral organ growth and fertility. GA functions during stamen development to promote degradation of the tapetum cell layer through programmed cell death (PCD) and in post-anthesis pollen development. Bioactive GA is synthesised through a multi-step pathway, in which the last two biosynthetic steps are expressed as conserved multigene families. One of these, the GA 20-oxidases (GA20ox) consists of five paralogues in Arabidopsis, though physiological functions have only been ascribed to two (AtGA20ox1 and -2). Through a reverse genetics approach, this project demonstrates that AtGA20ox1, -2 and -3 account for almost all GA20ox activity in Arabidopsis, with very little evidence of any functions for AtGA20ox4 or -5. Unlike AtGA20ox1, -2, -3 and -4, AtGA20ox5 possesses only partial GA20ox activity, performing the first two out of three sequential catalytic conversions in vitro. Partial functional redundancy occurs between AtGA20ox1, -2 and -3 across Arabidopsis development, although AtGA20ox1 and -2 dominate. Mapping of floral AtGA20ox expression through qPCR and the creation of transgenic GUS reporter lines found that the relationship between these three paralogues is complex, and not explicable through the simple hypothesis of co-expression in the same tissues. During anther development, the reported expression of AtGA20ox1, -2, -3 and -4 is mainly restricted to the tapetum cell layer, and loss of AtGA20ox1, -2 and -3 results in an anther developmental arrest in which the tapetum does not degrade. This project demonstrates that stamen development is dependent on an optimum level of GA, with GA-deficiency restricting filament elongation to prevent pollination and GA-overdose negatively affecting anther development. DELLA repression of GA signalling is necessary for successful pollen development, with two of the five DELLA paralogues, RGA and GAI, critical to this process in the Columbia ecotype

    The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning.

    Get PDF
    Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning

    Algebraic generation of minimum size orthogonal fractional factorial designs: an approach based on integer linear programming

    Get PDF
    Generation of orthogonal fractional factorial designs (OFFDs) is an important and extensively studied subject in applied statistics. In this paper we show how searching for an OFFD that satisfies a set of constraints, expressed in terms of orthogonality between simple and interaction effects, is, in many applications, equivalent to solving an integer linear programming problem.We use a recent methodology, based on polynomial counting functions and strata, that represents OFFDs as the positive integer solutions of a system of linear equations. We use this system to set up an optimization problem where the cost function to be minimized is the size of the OFFD and the constraints are represented by the system itself. Finally we search for a solution using standard integer programming techniques. Some applications are also presented in the computational results section. It is worth noting that the methodology does not put any restriction either on the number of levels of each factor or on the orthogonality constraints and so it can be applied to a very wide range of designs, including mixed orthogonal array

    Biocomposite from polylactic acid and lignocellulosic fibers: structure-property correlations

    Get PDF
    ABSTRACT PLA biocomposites were prepared using three corncob fractions and a wood fiber as reference. The composites were characterized by tensile testing, scanning electron (SEM) and polarization optical (POM) microscopy. Micromechanical deformation processes were followed by acoustic emission measurements. The different strength of the components was proved by direct measurements. Two consecutive micromechanical deformation processes were detected in composites containing the heavy fraction of corncob, which were assigned to the fracture of soft and hard particles, respectively. The fracture of soft particles does not result in the failure of the composites that is initi-ated either by the fracture of hard particles or by matrix cracking. Very large particles debond easily from the matrix resulting in catastrophic failure at very low stresses. At sufficiently large shear stresses large particles break easily during compounding, thus reinforcement depending on interfacial adhesion was practically the same in all composites irrespectively of initial fiber characteristics

    PLA/WOOD BIOCOMPOSITES: IMPROVING COMPOSITE STRENGTH BY CHEMICAL TREATMENT OF THE FIBERS

    Get PDF
    A resol type phenolic resin was prepared for the impregnation of wood particles used for the reinforcement of PLA. A preliminary study showed that the resin penetrates wood with rates depending on the concentration of the solution and on temperature. Treatment with a solution of 1 wt% resin resulted in a considerable increase of composite strength and decrease of water absorption. Composite strength improved as a result of increased inherent strength of the wood, but interfacial adhesion might be modified as well. When wood was treated with resin solutions of larger concentrations, the strength of the composites decreased, first slightly, then drastically to a very small value. A larger amount of resin results in a thick coating on wood with inferior mechanical properties. At large resin contents the mechanism of deformation changes; the thick coating breaks very easily leading to the catastrophic failure of the composites at very small loads

    The Bivariate Normal Copula

    Full text link
    We collect well known and less known facts about the bivariate normal distribution and translate them into copula language. In addition, we prove a very general formula for the bivariate normal copula, we compute Gini's gamma, and we provide improved bounds and approximations on the diagonal.Comment: 24 page

    Fiber association and network formation in PLA/lignocellulosic fiber composites.

    Get PDF
    PLA composites were prepared in an internal mixer with a lignocellulosic fiber having relatively large aspect ratio. Fiber content changed between 0 and 60 vol% and the homogenized material was compression molded to 1 mm thick plates. The composites showed anomalous behavior above certain fiber content. Their modulus and especially their strength decreased drastically and modeling also proved the loss of reinforcement at large fiber contents. Micromechanical testing showed that the mechanism of deformation and failure changes at a critical fiber content. Microscopic analysis indi-cated the formation of a network purely from geometrical reasons. The inherent strength of the network is very small because of the weak forces acting among the fibers. This weak inherent strength makes the structure of the composites very sensitive to pro-cessing conditions, and decreases strength, reproducibility as well as reliability

    Precision scans of the pixel cell response of double sided 3D pixel detectors to pion and x-ray beams

    Get PDF
    hree-dimensional (3D) silicon sensors offer potential advantages over standard planar sensors for radiation hardness in future high energy physics experiments and reduced charge-sharing for X-ray applications, but may introduce inefficiencies due to the columnar electrodes. These inefficiencies are probed by studying variations in response across a unit pixel cell in a 55μm pitch double-sided 3D pixel sensor bump bonded to TimePix and Medipix2 readout ASICs. Two complementary characterisation techniques are discussed: the first uses a custom built telescope and a 120GeV pion beam from the Super Proton Synchrotron (SPS) at CERN; the second employs a novel technique to illuminate the sensor with a micro-focused synchrotron X-ray beam at the Diamond Light Source, UK. For a pion beam incident perpendicular to the sensor plane an overall pixel efficiency of 93.0±0.5% is measured. After a 10o rotation of the device the effect of the columnar region becomes negligible and the overall efficiency rises to 99.8±0.5%. The double-sided 3D sensor shows significantly reduced charge sharing to neighbouring pixels compared to the planar device. The charge sharing results obtained from the X-ray beam study of the 3D sensor are shown to agree with a simple simulation in which charge diffusion is neglected. The devices tested are found to be compatible with having a region in which no charge is collected centred on the electrode columns and of radius 7.6±0.6μm. Charge collection above and below the columnar electrodes in the double-sided 3D sensor is observed

    Social behaviour and collective motion in plant-animal worms

    Get PDF
    © 2016 The Author(s) Published by the Royal Society. All rights reserved. Social behaviour may enable organisms to occupy ecological niches that would otherwise be unavailable to them. Here, we test this major evolutionary prin- ciple by demonstrating self-organizing social behaviour in the plant-animal, Symsagittifera roscoffensis. These marine aceol flat worms rely for all of their nutrition on the algae within their bodies: hence their common name. We show that individual worms interact with one another to coordinate their movements so that even at low densities they begin to swim in small polarized groups and at increasing densities such flotillas turn into circular mills. We use computer simulations to: (i) determine if real worms interact socially by com- paring them with virtual worms that do not interact and (ii) show that the social phase transitions of the real worms can occur based only on local inter- actions between and among them. We hypothesize that such social behaviour helps the worms to form the dense biofilms or mats observed on certain sun- exposed sandy beaches in the upper intertidal of the East Atlantic and to become in effect a super-organismic seaweed in a habitat where macro-algal seaweeds cannot anchor themselves. Symsagittifera roscoffensis, a model organ- ism in many other areas in biology (including stem cell regeneration), also seems to be an ideal model for understanding how individual behaviours can lead, through collective movement, to social assemblages
    corecore