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Algebraic generation of minimum size orthogonal
fractional factorial designs: an approach based
on integer linear programming

Roberto Fontana

Abstract Generation of orthogonal fractional factorial designs (OFFDs) is an
important and extensively studied subject in applied statistics. In this paper we show
how searching for an OFFD that satisfies a set of constraints, expressed in terms of
orthogonality between simple and interaction effects, is, in many applications, equiva-
lent to solving an integer linear programming problem. We use a recent methodology,
based on polynomial counting functions and strata, that represents OFFDs as the
positive integer solutions of a system of linear equations. We use this system to set
up an optimization problem where the cost function to be minimized is the size of the
OFFD and the constraints are represented by the system itself. Finally we search for a
solution using standard integer programming techniques. Some applications are also
presented in the computational results section. It is worth noting that the methodology
does not put any restriction either on the number of levels of each factor or on the
orthogonality constraints and so it can be applied to a very wide range of designs,
including mixed orthogonal arrays.

Keywords Design of experiments · Orthogonal fractional factorial designs ·
Algebraic statistics · Integer linear programming · Orthogonal arrays

1 Introduction

Orthogonal Fractional Factorial Designs (OFFDs) are frequently used in many fields
of application, including medicine, engineering and agriculture. They offer a valuable
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tool for dealing with problems where there are many factors involved and each 
run is expensive. They also keep the statistical analysis of the data quite simple. 
The literature on the subject is extremely rich. A non-exhaustive list of references, 
mainly related to the theory of the design of experiments, includes the fundamental pa-
per of Bose (1947) and the following books: Raktoe et al. (1981), Collombier (1996), 
Dey and Mukerjee (1999), Wu and Hamada (2000), Mukerjee and Wu (2006) and 
Bailey (2008).

Orthogonal Arrays (OAs) represent an important class of OFFDs, see, for example, 
Hedayat et al. (1999) and Schoen et al. (2010). Indeed an Orthogonal Array of appro-
priate strength can be used to solve the wide range of problems related to the study of 
the size of the main effects and interactions up to a given order of interest.

It is evident that in many real-life experiments, finding an OFFD with the smallest
possible number of runs is of great importance. This is particularly true in the case
where the cost of each experiment is high in terms of resources and/or time, such as
in the study of the relationship between fuel consumption and the design parameters
of a new car engine.

A large number of techniques are known to generate OFFDs and, in particular,
OAs. For example:

– the case where all factors have the same number p of levels and p is a prime
number or a power of a prime number, is commonly studied using Galois Fields
and finite geometries;

– Hadamard Matrices are used for OAs where all factors have 2 levels and where
strength is less than or equal to 3;

– difference schemes are a tool for constructing mixed orthogonal arrays of
strength 2.

From the above it is clear that there are several different methods covering different
situations. When different methods are applied to certain problems the solutions that 
are found can be significantly different. For example, as we will discuss in Sect. 4, 
minimum size orthogonal arrays with eleven 2-level factors and strength 2 obtained 
using Galois field G F(2) ≡ Z2 have 16 runs while those obtained using Hadam-
ard matrices have 12 runs. Thus the problem of finding minimum size OFFD can be 
difficult for the non-expert user due to the difficulty of selecting the most appropriate 
method.

The joint use of polynomial indicator functions and complex coding of levels 
provides a general theory for mixed level orthogonal fractional factorial designs, see 
Pistone and Rogantin (2008). This theory does not put any restriction either on the 
number of levels of each factor or on the orthogonality constraints. It also makes use 
of commutative algebra, see Pistone and Wynn (1996), and generalizes the approach 
to two-level designs as discussed in Fontana et al. (2000). The definition of strata 
provided in Sect. 2 makes it possible to transform each OFFD into a solution of a 
homogeneous system of linear equations where the unknowns are positive integers.

In Sect. 2 we briefly review the algebraic theory of orthogonal fractional facto-rial 
designs based on polynomial counting functions and strata. In Sect. 3 we set up an 
optimization problem whose solutions are minimum size OFFDs. Some applica-
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tions of the methodology are presented in Sect. 4. Finally, concluding remarks are in 
Sect. 5.

2 Algebraic description of fractional factorial designs using strata

In this Section, we report some relevant results of the algebraic theory of OFFDs, 
following the approach of Fontana and Pistone (2010a). The interested reader can 
find further information, including the proofs of the propositions in Fontana et al. 
(2000), Pistone and Rogantin (2008) and Fontana and Pistone (2010b).

2.1 Fractions of a full factorial design

Let us consider an experiment which includes m factors D j , j = 1, . . . , m. Let us
code the n j levels of the factor D j by the n j -th roots of the unity

D j = {ω(n j )

0 , . . . , ω
(n j )

n j −1},

where ω
(n j )

k = exp
(√−1 2π

n j
k
)

, k = 0, . . . , n j − 1, j = 1, . . . , m.

The full factorial design with complex coding is D = D1 × · · · D j · · · × Dm . We
denote its cardinality by #D, #D = ∏m

j=1 n j .

Definition 1 A fraction F is a multiset (F∗, f∗) whose underlying set of elements
F∗ is contained in D and f∗ is the multiplicity function f∗ : F∗ → N that for each
element in F∗ gives the number of times it belongs to the multiset F .

We recall that the underlying set of elements F∗ is the subset of D that contains all
the elements of D that appear in F at least once. We denote the number of elements
of a fraction F by #F , with #F = ∑

ζ∈F∗ f∗(ζ ).

Example 1 Let us consider m = 1, n1 = 3. We get

D =
{

1, exp

(√−1
2π

3

)
, exp

(√−1
4π

3

)}
.

The fraction F = {1, 1, exp
(√−1 2π

3

)} is the multiset (F∗, f∗) where F∗ =
{1, exp

(√−1 2π
3

)}, f∗(1) = 2, and f∗(exp
(√−1 2π

3

)
) = 1. We get #F = f∗(1) +

f∗(exp
(√−1 2π

3

)
) = 2 + 1 = 3.

In order to use polynomials to represent all the functions defined over D, including
multiplicity functions, we define

– X j , the j-th component function, which maps a point ζ = (ζ1, . . . , ζm) of D to its
j-th component,

X j : D � (ζ1, . . . , ζm) �−→ ζ j ∈ D j .

The function X j is called simple term or, by abuse of terminology, factor.
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– Xα = Xα1
1 · . . . · Xαm

m , α ∈ L = Zn1 × · · · × Znm , i.e. the monomial function

Xα : D � (ζ1, . . . , ζm) �→ ζ
α1
1 · . . . · ζ αm

m .

The function Xα is called interaction term

We observe that {Xα : α ∈ L = Zn1 ×  · · ·  ×  Znm } is a basis of all the complex 
functions defined over D. We use this basis to represent the counting function of a 
fraction according to Definition 2.

Definition 2 The counting function R of a fraction F is a complex polynomial defined
over D so that for each ζ ∈ D, R(ζ ) equals the number of appearances of ζ in the
fraction. A 0 − 1 valued counting function is called an indicator function of a single
replicate fraction F . We denote by cα the coefficients of the representation of R on D
using the monomial basis {Xα, α ∈ L}:

R(ζ ) =
∑
α∈L

cα Xα(ζ ), ζ ∈ D, cα ∈ C.

Remark 1 Vector orthogonality is defined with respect to the Hermitian product
defined as

f · g = EF ( f g) ≡ 1

#F
∑
ζ∈F

f (ζ )g(ζ ) ,

where g is the complex conjugate of g. It should be noted that
∑

ζ∈F f (ζ ) means∑
ζ∈F∗ f∗(ζ ) f (ζ ).
With the complex coding, over a generic F , the vector orthogonality of two

interaction terms, Xα and Xβ corresponds to the combinatorial orthogonality of the
corresponding multisets {Xα(ζ ) : ζ ∈ F} and {Xβ(ζ ) : ζ ∈ F}, i.e. each point of
their Cartesian product appears equally often.

With Proposition 1 from Pistone and Rogantin (2008), we link the orthogonality 
of two interaction terms with the coefficients of the polynomial representation of the 
counting function.

Proposition 1 If F is a fraction of a full factorial design D, R = ∑
α∈L cα Xα is its

counting function and [α − β] is the m-tuple made by the componentwise difference
in the rings Zn j , ([α1 − β1]n1, . . . , [α j − β j ]n j , . . . , [αm − βm]nm ), then

1. the coefficients cα are given by cα = 1
#D

∑
ζ∈F Xα(ζ ) ;

2. the term Xα is centered on F , i.e. 1
#F

∑
ζ∈F Xα(ζ ) = 0 if, and only if, cα =

c[−α] = 0;
3. the terms Xα and Xβ are orthogonal on F if and only if, c[α−β] = 0.
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Proof Item (1) follows from

∑
ζ∈F

Xα(ζ ) =
∑
ζ∈D

R(ζ )Xα(ζ ) =
∑
ζ∈D

∑
β∈L

cβ Xβ(ζ )Xα(ζ )

=
∑
β∈L

cβ

∑
ζ∈D

Xβ(ζ )Xα(ζ ) = #Dcα

where we use

∑
ζ∈D

Xβ(ζ )Xα(ζ ) =
{

0 if α 	= β

#D if α = β
.

Items (2) and (3) follow from Item (1). 
�
We now define projectivity and, in particular, its relation with orthogonal arrays.

Given I = {i1, . . . , ik} ⊂ {1, . . . , m}, i1 < · · · < ik we define the projection πI as

πI : D � ζ = (ζ1, . . . , ζm) �→ ζI ≡ (ζi1 , . . . , ζik ) ∈ Di1 × · · · × Dik .

Definition 3 A fraction F factorially projects onto the I -factors,
I = {i1, . . . , ik} ⊂ {1, . . . , m}, i1 < · · · < ik , if the projection πI (F) is a multiple full
factorial design, i.e. the multiset (Di1 ×· · ·×Dik , f∗) where the multiplicity function
f∗ is constantly equal to a positive integer over Di1 × · · · × Dik .

Example 2 Let us consider m = 2, n1 = n2 = 2 and the fraction F =
{(−1, 1), (−1, 1), (1,−1), (1, 1)}. We obtain π1(F) = {−1,−1, 1, 1} and π2(F) =
{−1, 1, 1, 1}. It follows that F projects on the first factor and does not project on the
second factor.

Definition 4 A fraction F is a mixed orthogonal array of strength t if it factorially
projects onto any I -factors with #I = t .

Proposition 2 A fraction factorially projects onto the I -factors,
I = {i1, . . . , ik} ⊂ {1, . . . , m}, i1 < · · · < ik , if and only if, all the coefficients of the
counting function involving the I -factors only are 0.

#D

Proof We give a sketch of the proof available in full in Pistone and Rogantin (2008). 
It can be shown that the number of times that a point ζI ∈ DI ≡ Di1 ×  · · ·  ×  Dik

appears in the projection of F onto the I -factors is equal to #D
I

∑
αI ∈L I cαI X

αI (ζI )

where L I = πI (L). It follows that it will be constant if and only if all the coefficients
cαI , with αI 	= (0, . . . , 0) are zero. 
�

Proposition 2 can be immediately stated for mixed orthogonal arrays.

Proposition 3 A fraction is an orthogonal array of strength t if and only if, all the
coefficients cα of the counting function up to the order t are 0.
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2.2 Counting functions and strata

It follows from Propositions 1, 2 and 3 that the problem of finding orthogonal 
fractional factorial designs can be written as a polynomial system in which the 
indeterminates are the complex coefficients cα of the counting polynomial fraction.

Let us now introduce a different way to describe the full factorial design D and 
all its subsets. We consider the indicator functions 1ζ of all the single points of D. 
The counting function R of a fraction F can be written as 

∑
ζ yζ 1ζ with yζ ≡ 

R(ζ ) ∈ { 0, 1, . . . , n, . . . }. The particular case in which R is an 
∈D

indicator function 
cor-responds to yζ ∈ { 0, 1}. From Proposition 1 we obtain that the values of the 
countingfunction over D, yζ , are related to the coefficients cα by cα = 1

#D
∑

ζ∈D yζ Xα(ζ ).
As described in Section 2.1, we consider m factors, D1, . . . , Dm where D j ≡ Ωn j =
{ω(n j )

0 , . . . , ω
(

n
n

j 
j
−

)

1}, f o r  j = 1, . . . , m. F r o m Pistone and Rogantin (2008), we recall
two basic properties which hold true for the full design D.

Proposition 4 Let X j be the simple term with level set

D j = Ωn j = {ω(n j )

0 , . . . , ω
(n j )

n j −1}, j = 1, . . . , m. Let Xα = Xα1
1 · · · Xαm

m be an
interaction.

1. Over D, the term Xr
j takes all the values of Ωs j equally often, where s j = 1 if

r = 0 and s j = n j/ gcd(r, n j ) if r > 0.
2. Over D, the term Xα takes all the values of Ωs equally often, where s =

lcm(s1, . . . , sm ) and si , that is determined according to the previous Item 4,

corresponds to X i
αi , i = 1, . . . , m.

Let us now define the strata that are associated with simple and interaction terms.

Definition 5 Given a term Xα, α ∈ L = Zn1 × · · · × Znm , the full design D is

partitioned into the strata Dα
h = {ζ ∈ D : Xα(ζ ) = ω

(s)
h }, where ω

(s)
h ∈ Ωs and s is

determined according to the previous Proposition 4.

We use nα,h to denote the number of points of the fraction F that are in the stratum
Dα

h , nα,h = ∑
ζ∈Dα

h
yζ , h = 0, . . . , s − 1. Proposition 5 links the coefficients cα with

nα,h .

Proposition 5 Let F be a fraction of D with counting function R = ∑
α∈L cα Xα .

Each cα, α ∈ L, depends on nα,h, h = 0, . . . , s − 1, as cα = 1
#D

∑s−1
h=0 nα,hω

(s)
h ,

where s is determined by Xα according to Proposition 4.

Proof From Proposition 1 we know that cα = 1 #D
∑

ζ∈F Xα(ζ ). It follows

cα = 1

#D
∑
ζ∈D

yζ Xα(ζ ) = 1

#D
s−1∑
h=0

∑
ζ∈Dα

h

yζ Xα(ζ )

= 1

#D
s−1∑
h=0

ω
(s)
h

∑
ζ∈Dα

h

yζ = 1

#D
s−1∑
h=0

nα,hω
(s)
h .



We now use a part of Proposition 3 from Pistone and Rogantin (2008) to obtain 
conditions on nα,h that make Xα centered on the fraction F .

Proposition 6 Let Xα be a term with level set Ωs on full design D and let P(ζ ) be
the complex polynomial associated with the sequence (nα,h)h=0,...,s−1 so that P(ζ ) =∑s−1

h=0 nα,hζ h and Φs the cyclotomic polynomial of the s-roots of the unity.

1. Let s be prime. The term Xα is centered on the fraction F if, and only if, its s
levels appear equally often nα,0 = nα,1 = . . . = nα,s−1 = λα;

2. Let s = ph1
1 . . . phd

d , pi prime, i = 1, . . . , d. The term Xα is centered on the frac-
tion F if, and only if, the remainder H(ζ ) = P(ζ ) mod Φs(ζ ), whose coefficients
are integer linear combinations of nα,h, h = 0, . . . , s − 1, is identically zero.

We observe that, since Dα
h is a partition of D, if s is prime, we get λα = #F

s . If we
recall that nα,h are related to the values of the counting function R of a fraction F by

ζ∈Dα
h

nα,h = 
∑ 

yζ , Proposition 6 allows us to express the condition Xα is centered on

F as integer linear combinations of the values R(ζ ) of the counting function over the 
full design D. In Sect. 2.3, we will show the use of this property to generate 
fractional factorial designs.

2.3 Generation of fractions

We use strata to generate fractions that satisfy a given set of constraints on the coeffi-
cients of their counting functions. Formally, we give the following definition:

Definition 6 Given C ⊆ Zn1 × · · · × Znm , a counting function R = ∑
α cα Xα asso-

ciated with F is a C-compatible counting function if cα = 0, ∀α ∈ C.

The set of all the fractions of D whose counting functions are C-compatible is denoted
by O F(n1 . . . nm, C).

For example let us consider O A(n, sm, t), i.e. orthogonal arrays with n rows and
m columns where each column has s symbols, s prime and with strength t . Using
Proposition 3 the coefficients of the corresponding counting functions must satisfy the
conditions cα = 0 for allα ∈ C whereC = {α ∈ L ≡ (Zs)

m : 0 < ‖α‖ ≤ t} and‖α‖ is
the number of non-null elements of α. It follows that O F(sm, C) = ⋃

n O A(n, sm, t).
Now using Proposition 6, we can express these conditions using strata. If we consider

α ∈ C, we can write the condition cα = 0 as
∑ζ∈Dα

h yζ ≡ nα,h = λ, h = 0, . . . , s −1

or, equivalently, as ⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

nα,0 − nα,1 = 0

nα,1 − nα,2 = 0

. . .

nα,s−2 − nα,s−1 = 0

.

To obtain all the conditions it is enough to vary α ∈ C. We therefore obtain the
homogeneous system of linear equations AY = 0 where A is the (#C · (s − 1) × sm)
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matrix whose rows contain the values, over D, of the difference between two indicator
functions of strata, 1Dα

h
− 1Dα

h+1
h = 0, . . . , s − 2; Y is the sm column vector whose

entries are the values of the counting function over D; 0 is the (#C · (s − 1)) column
vector whose entries are all equal to 0.

We can also write an equivalent homogeneous system if we consider λ as a new
variable.

It is now straightforward to verify a well-known result, which is the union of two
Orthogonal Arrays, F1 ∈ O A(n1, sm, t) with counting function represented by Y1 and
F2 ∈ O A(n2, sm, t) with counting function represented by Y2, is another Orthogonal
Array F1

⋃ F2 ∈ O A(n1 +n2, sm, t) with counting function represented by Y1 +Y2.
Let us now consider the general case in which there are no restrictions on the 

number of levels and show our method for O A (n, 42, 1). In this case the number of 
levels is a power of a prime, 4 = 22. Using Proposition 3 the coefficients of the 
corresponding counting functions must satisfy the conditions cα = 0 for all α ∈ C 
where C = { α ∈ L ≡ Z4 × Z4 : ‖ α‖ = 1}. Let us consider 
c1,0. F r o m I t e m ( 4) o f  Proposition 4, X1 takes the values in Ωs where s = 4. 
From Proposition 6, X1 will be centered on F if and only if, the remainder H(ζ ) = 
P(ζ ) mod Φ4(ζ ) is identically zero. We have Φ4(ζ ) = 1 + ζ 2 (see Lang 1965) and 
so we can compute the remainder H(ζ ) = n(1,0),0 − n(1,0),2 + (n(1,0),1 − n(1,0),3)ζ . 
The condition that H(ζ ) must be identically zero translates into

{
n(1,0),0 − n(1,0),2 = 0

n(1,0),1 − n(1,0),3 = 0
.

Let us now consider c2,0. F r o m I t e m ( 4) of Proposition 4, X1
2 takes the values 

in Ωs where s = 2. From Proposition 6, X1
2 will be centered on F if and only if

n(2,0),0 − n(2,0),1 = 0.

If we repeat the same procedure for all the α such that ‖α‖ = 1 we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n(1,0),0 − n(1,0),2 = 0

n(1,0),1 − n(1,0),3 = 0

n(2,0),0 − n(2,0),1 = 0

n(3,0),0 − n(3,0),2 = 0

n(3,0),1 − n(3,0),3 = 0

n(0,1),0 − n(0,1),2 = 0

n(0,1),1 − n(0,1),3 = 0

n(0,2),0 − n(0,2),1 = 0

n(0,3),0 − n(0,3),2 = 0

n(0,3),1 − n(0,3),3 = 0

.
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If we recall that nα,h = ∑
ζ∈Dα

h
yζ , and so, for example, n(1,0),0 = y1,1 + y1,i +

y1,−1 + y1,−i with i = √−1, the orthogonal arrays O A(n, 42, 1) become the positive
integer solutions of the following integer linear homogeneous system:

AY =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0
0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0 1
1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0 0 0
0 0 0 0 −1 −1 −1 −1 0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,1
yi,1

y−1,1
y−i,1
y1,i
yi,i

y−1,i
y−i,i
y1,−1
yi,−1

y−1,−1
y−i,−1
y1.−i
yi,−i

y−1,−i
y−i,−i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It should be noted that the matrix A of the coefficients is not full rank, e.g. the first and
the fourth rows are equal. This aspect is discussed in Fontana and Pistone (2010b).
In any case the solution method used here does not require a reduction to a full rank
matrix.

3 The optimization problem

In many practical situations, experimenters are interested in finding minimum size
orthogonal fractional designs, i.e. fractional factorial designs that satisfy some orthog-
onality requirements and have the minimum number of points.

According to our formalization, the problem is equivalent to extracting one fraction
F∗ from O F(n1 . . . nm, C), such that the size of the fraction #F∗ is minimum.

The problem can be written as

⎧
⎪⎨
⎪⎩

min 1T Y

subject to

AY = 0

,

where A is the matrix built as explained in Sect. 2.3, 0  is the column vector that has 
the same numer of rows of A and whose entries are all equal to 0, 1 is the #D column 
vector whose entries are all equal to 1, 1T is its transpose and Y is a vector of positive 
integer numbers that contains the unknown counting function values, Y 	= [0, . . . , 0].

4 Computational results

We experimented with our approach in the following cases

1. pure orthogonal arrays: O A(n, 211, 2);
2. mixed level orthogonal arrays: O A(n, 2 · 37, 2);
3. sudoku designs: 9 rows, 9 columns and 9 symbols.
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The fractions that are the results of the first two items are mainly used in screen-
ing analysis for the identification of significant main effects and cover both the
homogeneous and mixed level cases. Sudoku can also be considered as a special
design of experiment.

We use lp_solve (Berkelaar et al. 2004), a widely-used and well-known open source 
(Mixed-Integer) linear programming system. It is based on the revised simplex method 
and the branch-and-bound method for integers. Solutions provided by the software are 
of course guaranteed to be global optima. We use a common laptop (Intel Pentium(R) 
Dual-Core CPU E6500 2.93GHz, RAM 4Gb).

We use the Proc Factex of SAS/QC, see SAS (2010), as a term of comparison. 
We recall that Proc Factex constructs fractional factorial designs by using Galois 
fields and has a specific option that allows us to search for minimum size design. The 
SAS code is in the Appendix. We use SAS On Demand for Academics, by 
connecting to a SAS-hosted server over the web through an interface (see http://
www.sas.com/govedu/edu/programs/od_academics.html for more details). In all 
three cases the computational time is negligible (<1 s).

4.1 O A(n, 211, 2)

Using Proposition 3 the coefficients of the corresponding counting functions must
satisfy the conditions cα = 0 for all α ∈ C where C = {α ∈ L ≡ Z

11
2 : 0 < ‖α‖ ≤ 2}.

The corresponding matrix A has

(
11 +

(
11

2

))
= 66 rows and 211 = 2,048 columns.

We found a solution that has 12 points and belongs to the class of Plackett Burman 
designs, (Plackett and Burman 1946). The computational time is around 1 min.

Using Proc Factex we obtain a solution that has 16 runs. The reason for this differ-
ence is that Proc Factex searches only for fractions that can be expressed as solutions
of a system of confounding rules. Given m factors, A1, . . . , Am , each with q levels
that run from 0 to q − 1, a confounding rule is

r1 A1 + · · · + rm Am = 0 ,

where ri , Ai ∈ { 0, . . . , q − 1} and the computations are made in (G F (q))m . Further 
details can be found in SAS (2010).

4.2 O A(n, 2 · 37, 2)

Using Proposition 3 the coefficients of the corresponding counting functions must
satisfy the conditions cα = 0 for all α ∈ C where C = {α ∈ L ≡ Z2 × Z

7
3 : 0 <

‖α‖ ≤ 2}. The corresponding matrix A has 225 rows and 2 · 37 = 4, 374 columns.
We found a solution that has 18 points and belongs to the well-known class of L18 
designs, Wu and Hamada (2000). The computational time is around 8 minutes.

Proc Factex does not directly manage mixed level designs. We use the collapsing
factors technique, that is, we replace the factor with 2 levels with a factor with 3
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levels. We obtain a fraction with 27 run. This fraction does not project onto the {1, j}-
factors, with j = 2, . . . , 8 while orthogonality is retained in the sense that estimates 
of different effects are uncorrelated, although not all estimates have equal variance, 
Chakravarti (1956).

4.3 Sudoku designs

In recent years, sudoku has become a very popular game. In its most common form, 
the objective of the game is to complete a 9 × 9 grid with the digits from 1 to 9. 
Each digit must appear once only in each column, each row and each of the nine 
3 × 3 boxes. It is known that sudoku grids are special cases of Latin squares in the 
class of gerechte designs, s e e Bailey et al. (2008). In Fontana and Rogantin 
(2010) t h e  connections between sudoku grids and experimental designs are 
extensively studied in the framework of Algebraic Statistics.

Formally, the sudoku design is a fraction F of the full factorial design D:

D = R1 × R2 × C1 × C2 × S1 × S2 ,

where each factor is coded with the p-th roots of the unity.
To be a sudoku, F must meet the game rules:

1. the fraction has p4 points, i.e. the number of the cells of the grid;
2. (a) all the cells appear exactly once: the projection of F over the factors

R1, R2, C1, C2 is a full factorial design;
(b) each symbol appears exactly once in each row: the projection of F over the

factors R1, R2, S1, S2 is a full factorial design,
(c) each symbol appears exactly once in each column: the projection of F over

the factors C1, C2, S1, S2 is a full factorial design,
(d) each symbol appears exactly once in each box: the projection of F over the

factors R1, C1, S1, S2 is a full factorial design.

We translate the previous statements into conditions on the coefficients bα of the
indicator polynomial function F = ∑

α∈L bα Xα, L ≡ (Zp)
6 of F as in the Proposi-

tion 12.5 of Fontana and Rogantin (2010).

Proposition 7 (Sudoku fractions) Let us consider 6 factors, each with p levels, p
prime. A fraction F corresponds to a sudoku fraction if and only if the coefficients cα

of its counting function satisfy the following conditions:

1. b000000 = 1/p2;
2. for all i j ∈ {0, 1, . . . , p − 1}:

(a) bi1i2i3i400 = 0 for (i1, i2, i3, i4) 	= (0, 0, 0, 0),
(b) bi1i200i5i6 = 0 for (i1, i2, i5, i6) 	= (0, 0, 0, 0),
(c) b00i3i4i5i6 = 0 for (i3, i4, i5, i6) 	= (0, 0, 0, 0),
(d) bi10i30i5i6 = 0 for (i1, i3, i5, i6) 	= (0, 0, 0, 0).

As expected, for the special case p = 3, we found a solution that has 81 points
and that can be arranged in a 9 × 9 table as seen in newspaper puzzles. This is further
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evidence that the method does not put any restriction on the type of orthogonality
constraints. The computational time is around 1 min.

The use of Proc Factex provides a fraction that has 81 points.

5 Conclusion

The joint use of polynomial counting functions and strata makes it possible to write
all the orthogonal fractional factorial designs as solutions of a certain system of linear
equations. The search for a minimal size OFFD becomes equivalent to an integer linear
programming problem where the cost function is the total number of experiments.

It is worth noting that the methodology does not put any restriction either on the
number of levels of each factor or on the orthogonality constraints and so it can be
applied to a very wide range of designs. The range of applications is limited only by
the amount of computational effort required. Finally we observe that the generalisation
to any linear cost function is straightforward.
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Appendix

O A(n, 211, 2)

proc factex;
factors x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11;
size design= minimum ;
model resolution= 3 ;
examine design;
run;

O A(n, 2 · 37, 2)

proc factex;
factors x1-x8 / nlev = 3;
size design= minimum;
model resolution=3;
output out=fraction x1 nvals=(-1 1 -1);
run;
proc print data=fraction;
run;
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Sudoku designs

proc factex;
factors x1-x6 / nlev = 3;
size design= minimum;
model estimate =(
x1|x2 x3|x4 x5|x6 x1|x3);
output out=sudoku;
run;
proc print data=sudoku;
run;
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