97 research outputs found
Scaled penalization of Brownian motion with drift and the Brownian ascent
We study a scaled version of a two-parameter Brownian penalization model
introduced by Roynette-Vallois-Yor in arXiv:math/0511102. The original model
penalizes Brownian motion with drift by the weight process
where and
is the running maximum of the Brownian motion. It was
shown there that the resulting penalized process exhibits three distinct phases
corresponding to different regions of the -plane. In this paper, we
investigate the effect of penalizing the Brownian motion concurrently with
scaling and identify the limit process. This extends a result of Roynette-Yor
for the case to the whole parameter plane and reveals two
additional "critical" phases occurring at the boundaries between the parameter
regions. One of these novel phases is Brownian motion conditioned to end at its
maximum, a process we call the Brownian ascent. We then relate the Brownian
ascent to some well-known Brownian path fragments and to a random scaling
transformation of Brownian motion recently studied by Rosenbaum-Yor.Comment: 32 pages; made additions to Section
Specificity of DNA-binding by the FAX-1 and NHR-67 nuclear receptors of Caenorhabditis elegans is partially mediated via a subclass-specific P-box residue
<p>Abstract</p> <p>Background</p> <p>The nuclear receptors of the NR2E class play important roles in pattern formation and nervous system development. Based on a phylogenetic analysis of DNA-binding domains, we define two conserved groups of orthologous NR2E genes: the NR2E1 subclass, which includes <it>C. elegans nhr-67, Drosophila tailless </it>and <it>dissatisfaction</it>, and vertebrate Tlx (NR2E2, NR2E4, NR2E1), and the NR2E3 subclass, which includes <it>C. elegans fax-1 </it>and vertebrate PNR (NR2E5, NR2E3). PNR and Tll nuclear receptors have been shown to bind the hexamer half-site AAGTCA, instead of the hexamer AGGTCA recognized by most other nuclear receptors, suggesting unique DNA-binding properties for NR2E class members.</p> <p>Results</p> <p>We show that NR2E3 subclass member FAX-1, unlike NHR-67 and other NR2E1 subclass members, binds to hexamer half-sites with relaxed specificity: it will bind hexamers with the sequence ANGTCA, although it prefers a purine to a pyrimidine at the second position. We use site-directed mutagenesis to demonstrate that the difference between FAX-1 and NHR-67 binding preference is partially mediated by a conserved subclass-specific asparagine or aspartate residue at position 19 of the DNA-binding domain. This amino acid position is part of the "P box" that plays a critical role in defining binding site specificity and has been shown to make hydrogen-bond contacts to the second position of the hexamer in co-crystal structures for other nuclear receptors. The relaxed specificity allows FAX-1 to bind a much larger repertoire of half-sites than NHR-67. While NR2E1 class proteins bind both monomeric and dimeric sites, the NR2E3 class proteins bind only dimeric sites. The presence of a single strong site adjacent to a very weak site allows dimeric FAX-1 binding, further increasing the number of dimeric binding sites to which FAX-1 may bind <it>in vivo</it>.</p> <p>Conclusion</p> <p>These findings identify subclass-specific DNA-binding specificities and dimerization properties for the NR2E1 and NR2E3 subclasses. For the NR2E1 protein NHR-67, Asp-19 permits binding to AAGTCA half-sites, while Asn-19 permits binding to AGGTCA half-sites. The apparent conservation of DNA-binding properties between vertebrate and nematode NR2E receptors allows for the possibility of evolutionarily-conserved regulatory patterns.</p
When Too Much Is Not Enough: Obsessive-Compulsive Disorder as a Pathology of Stopping, Rather than Starting
Background: In obsessive-compulsive disorder (OCD), individuals feel compelled to repeatedly perform security-related behaviors, even though these behaviours seem excessive and unwarranted to them. The present research investigated two alternative ways of explaining such behavior: (1) a dysfunction of activation—a starting problem—in which the level of excitation in response to stimuli suggesting potential danger is abnormally strong; versus (2) a dysfunction of termination— a stopping problem—in which the satiety-like process for shutting down security-related thoughts and actions is abnormally weak. Method: In two experiments, 70 patients with OCD (57 with washing compulsions, 13 with checking compulsions) and 72 controls were exposed to contamination cues—immersing a hand in wet diapers —and later allowed to wash their hands, first limited to 30 s and then for as long as desired. The intensity of activation of security motivation was measured objectively by change in respiratory sinus arrythmia. Subjective ratings (e.g., contamination) and behavioral measures (e.g., duration of hand washing) were also collected. Results: Compared to controls, OCD patients with washing compulsions did not differ significantly in their levels of initial activation to the threat of contamination; however, they were significantly less able to reduce this activation by engaging in the corrective behavior of hand-washing. Further, the deactivating effect of hand-washing in OCD patients with checkin
Evolutionary diversity is associated with wood productivity in Amazonian forests
Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity
Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya and Pectobacterium spp.)
International audienceBACKGROUND: Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. METHODOLOGY/PRINCIPAL FINDINGS: Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. CONCLUSIONS/SIGNIFICANCE: Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the mechanisms of communication via the diffusible molecules. Our results designate autoinducer-1 lactones as the main targets for a global biocontrol of soft-rot bacteria communications, including those of emerging isolates
Allowable CO2 emissions based on regional and impact-related climate targets
This paper was accepted for publication in the journal Nature and the definitive published version is available at http://dx.doi.org/10.1038/nature16542© 2016 Macmillan Publishers Limited. All rights reserved. Global temperature targets, such as the widely accepted limit of an increase above pre-industrial temperatures of two degrees Celsius, may fail to communicate the urgency of reducing carbon dioxide (CO2) emissions. The translation of CO2 emissions into regional- and impact-related climate targets could be more powerful because such targets are more directly aligned with individual national interests. We illustrate this approach using regional changes in extreme temperatures and precipitation. These scale robustly with global temperature across scenarios, and thus with cumulative CO2 emissions. This is particularly relevant for changes in regional extreme temperatures on land, which are much greater than changes in the associated global mean
The global abundance of tree palms
Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.
Location: Tropical and subtropical moist forests.
Time period: Current.
Major taxa studied: Palms (Arecaceae).
Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.
Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.
Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests
The pace of life for forest trees
This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in this record Data availability statement: The plot-level input data and R code that are needed to replicate our analyses are available at https://github/Lalasia/pace_of_life.com and doi.org/10.5281/zenodo.11615767 (56). The tree-by-tree observations used to generate the plot-level input data are also published with this paper. However, this file does not include data from networks with sensitive species or a need for indigenous data sovereignty. These data are available upon request for research purposes by emailing the following networks: Alberta Agriculture and Forestry Division https://www.alberta.ca/permanent-sample-plots-program, email: [email protected], Saskatchewan Minister of Environment Forest Service Branch https://www.saskatchewan.ca/contact-us, ForestGeo https://forestgeo.si.edu/explore-data ((20–22), and ForestPlots https://forestplots.net/en/using-forestplots/in-the-field, email: [email protected] (18, 19).Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world's forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.3 to 3195 years) and show that the pace of life for trees can be accurately classified into four demographic functional types. We found emergent patterns in the strength of trade-offs between growth and longevity across a temperature gradient. Furthermore, we show that the diversity of life history traits varies predictably across forest biomes, giving rise to a positive relationship between trait diversity and productivity. Our pan-latitudinal assessment provides new insights into the demographic mechanisms that govern the carbon turnover rate across forest biomes.European Union Horizon 2020Royal SocietyNatural Environment Research Council (NERC
- …