17 research outputs found

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Natalizumab treatment shows low cumulative probabilities of confirmed disability worsening to EDSS milestones in the long-term setting.

    Get PDF
    Abstract Background Though the Expanded Disability Status Scale (EDSS) is commonly used to assess disability level in relapsing-remitting multiple sclerosis (RRMS), the criteria defining disability progression are used for patients with a wide range of baseline levels of disability in relatively short-term trials. As a result, not all EDSS changes carry the same weight in terms of future disability, and treatment benefits such as decreased risk of reaching particular disability milestones may not be reliably captured. The objectives of this analysis are to assess the probability of confirmed disability worsening to specific EDSS milestones (i.e., EDSS scores ≄3.0, ≄4.0, or ≄6.0) at 288 weeks in the Tysabri Observational Program (TOP) and to examine the impact of relapses occurring during natalizumab therapy in TOP patients who had received natalizumab for ≄24 months. Methods TOP is an ongoing, open-label, observational, prospective study of patients with RRMS in clinical practice. Enrolled patients were naive to natalizumab at treatment initiation or had received ≀3 doses at the time of enrollment. Intravenous natalizumab (300 mg) infusions were given every 4 weeks, and the EDSS was assessed at baseline and every 24 weeks during treatment. Results Of the 4161 patients enrolled in TOP with follow-up of at least 24 months, 3253 patients with available baseline EDSS scores had continued natalizumab treatment and 908 had discontinued (5.4% due to a reported lack of efficacy and 16.4% for other reasons) at the 24-month time point. Those who discontinued due to lack of efficacy had higher baseline EDSS scores (median 4.5 vs. 3.5), higher on-treatment relapse rates (0.82 vs. 0.23), and higher cumulative probabilities of EDSS worsening (16% vs. 9%) at 24 months than those completing therapy. Among 24-month completers, after approximately 5.5 years of natalizumab treatment, the cumulative probabilities of confirmed EDSS worsening by 1.0 and 2.0 points were 18.5% and 7.9%, respectively (24-week confirmation), and 13.5% and 5.3%, respectively (48-week confirmation). The risks of 24- and 48-week confirmed EDSS worsening were significantly higher in patients with on-treatment relapses than in those without relapses. An analysis of time to specific EDSS milestones showed that the probabilities of 48-week confirmed transition from EDSS scores of 0.0–2.0 to ≄3.0, 2.0–3.0 to ≄4.0, and 4.0–5.0 to ≄6.0 at week 288 in TOP were 11.1%, 11.8%, and 9.5%, respectively, with lower probabilities observed among patients without on-treatment relapses (8.1%, 8.4%, and 5.7%, respectively). Conclusions In TOP patients with a median (range) baseline EDSS score of 3.5 (0.0–9.5) who completed 24 months of natalizumab treatment, the rate of 48-week confirmed disability worsening events was below 15%; after approximately 5.5 years of natalizumab treatment, 86.5% and 94.7% of patients did not have EDSS score increases of ≄1.0 or ≄2.0 points, respectively. The presence of relapses was associated with higher rates of overall disability worsening. These results were confirmed by assessing transition to EDSS milestones. Lower rates of overall 48-week confirmed EDSS worsening and of transitioning from EDSS score 4.0–5.0 to ≄6.0 in the absence of relapses suggest that relapses remain a significant driver of disability worsening and that on-treatment relapses in natalizumab-treated patients are of prognostic importance

    Marine Isotope Stage 4 (71–57 ka) on the Western European margin: Insights to the drainage and dynamics of the Western European Ice Sheet

    No full text
    Marine Isotope Stage (MIS) 4 (ca. 71–57 ka; within the Middle Weichselian Substage) is considered a significant Pleistocene glaciation, but it remains poorly constrained in comparison to that of the Late Weichselian Last Glacial Maximum (LGM; ca. 29–19 ka, during MIS 2), or even the Late Saalian MIS 6 (ca. 190–130 ka). Most MIS 4 glacial landforms in Europe were erased by the more extensive LGM ice advance, precluding a robust recon struction of its extent and dynamic through time. Marine sedimentary archives, in preserving the source-to-sink sediment transfer signals of ice-sheet and glacier processes, help to bridge this gap. Here, the signals west of the European Ice Sheet (EIS) are tracked for MIS 4 from the deep Bay of Biscay (NE Atlantic), which was the outlet for Fennoscandian Ice Sheet (FIS) sediment-laden meltwater during extensive glaciations, specifically when the British-Irish Ice Sheet (BIIS) and the FIS coalesced into the North Sea (as during MIS 6 and the LGM). Sedi mentological, geochemical, and mineralogical proxies reveal the absence of FIS-derived material in Bay of Biscay sediment throughout MIS 4, which indicates that FIS meltwater and huge river systems from the North European Plain never drained into the Bay of Biscay at that time. This suggests that contrary to MIS 6 and the LGM, the BIIS and FIS were not likely large enough to coalesce and form a (grounded) ice bridge onto the North Sea, thus confirming geomorphic evidence for a significant, but relatively limited, glaciation in Europe during MIS 4. Closer to the Bay of Biscay, ice-marginal fluctuations of the BIIS are identified in the Celtic-Irish Sea region from the deep-sea record. More specifically, our findings suggest an early retreat of the Irish Sea Ice Stream as soon as ca. 68–65 ka, a few millennia before the demise of the EIS, and the Northern Hemisphere ice sheets as a whole, during Heinrich Stadial (HS) 6. This pattern is similar to that already recorded during MIS 2. Finally, this study reveals that the MIS 4 period in Western Europe corresponds, as for MIS 2, to a complex combination of general ice advance interspersed by preliminary-to-final EIS demises highlighted by HS conditions.LA/P/0101/2020; PTDC/CTA-CLI/4608/2020; POCI-01-0145-FEDER-022157; ACCLIMATE/n◩ 339108info:eu-repo/semantics/publishedVersio

    Continuous Positive Airway Pressure (CPAP) face-mask ventilation is an easy and cheap option to manage a massive influx of patients presenting acute respiratory failure during the SARS-CoV-2 outbreak: A retrospective cohort study.

    No full text
    IntroductionBecause of the COVID-19 pandemic, intensive care units (ICU) can be overwhelmed by the number of hypoxemic patients.Material and methodsThis single centre retrospective observational cohort study took place in a French hospital where the number of patients exceeded the ICU capacity despite an increase from 18 to 32 beds. Because of this, 59 (37%) of the 159 patients requiring ICU care were referred to other hospitals. From 27th March to 23rd April, consecutive patients who had respiratory failure or were unable to maintain an SpO2 > 90%, despite receiving 10-15 l/min of oxygen with a non-rebreather mask, were treated by continuous positive airway pressure (CPAP) unless the ICU physician judged that immediate intubation was indicated. We describe the characteristics, clinical course, and outcomes of these patients. The main outcome under study was CPAP discontinuation.ResultsCPAP was initiated in 49 patients and performed out of ICU in 41 (84%). Median age was 65 years (IQR = 54-71) and 36 (73%) were men. Median respiratory rate before CPAP was 36 (30-40) and median SpO2 was 92% (90-95) under 10 to 15 L/min oxygen flow. Median duration of CPAP was 3 days (IQR = 1-5). Reasons for discontinuation of CPAP were: intubation in 25 (51%), improvement in 16 (33%), poor tolerance in 6 (12%) and death in 2 (4%) patients. A decision not to intubate had been taken for 8 patients, including the 2 who died while on CPAP. Two patients underwent less than one hour CPAP for poor tolerance. In the end, 15 (38%) out of 39 evaluable patients recovered with only CPAP whereas 24 (62%) were intubated.ConclusionsCPAP is feasible in a non-ICU environment in the context of massive influx of patients. In our cohort up to 1/3 of the patients presenting with acute respiratory failure recovered without intubation

    Ages, ÎŽÂč⁞O, SST, ln(Fe/Ca), pollen and plant wax isotopes of sediment core MD96-2048

    No full text
    The past two million years of eastern African climate variability is currently poorly constrained, despite interest in understanding its assumed role in early human evolution1,2,3,4. Rare palaeoclimate records from northeastern Africa suggest progressively drier conditions2,5 or a stable hydroclimate6. By contrast, records from Lake Malawi in tropical southeastern Africa reveal a trend of a progressively wetter climate over the past 1.3 million years7,8. The climatic forcings that controlled these past hydrological changes are also a matter of debate. Some studies suggest a dominant local insolation forcing on hydrological changes9,10,11, whereas others infer a potential influence of sea surface temperature changes in the Indian Ocean8,12,13. Here we show that the hydroclimate in southeastern Africa (20–25° S) is controlled by interplay between low-latitude insolation forcing (precession and eccentricity) and changes in ice volume at high latitudes. Our results are based on a multiple-proxy reconstruction of hydrological changes in the Limpopo River catchment, combined with a reconstruction of sea surface temperature in the southwestern Indian Ocean for the past 2.14 million years. We find a long-term aridification in the Limpopo catchment between around 1 and 0.6 million years ago, opposite to the hydroclimatic evolution suggested by records from Lake Malawi. Our results, together with evidence of wetting at Lake Malawi, imply that the rainbelt contracted toward the Equator in response to increased ice volume at high latitudes. By reducing the extent of woodland or wetlands in terrestrial ecosystems, the observed changes in the hydroclimate of southeastern Africa—both in terms of its long-term state and marked precessional variability—could have had a role in the evolution of early hominins, particularly in the extinction of Paranthropus robustus
    corecore