115 research outputs found

    Ecological training set of freshwater ostracods in Canadian and Siberian periglacial regions

    Get PDF
    Quantified palaeoenvironmental reconstructions are essential to estimate the impact of future climate changes on ecosystems. Based on faunistic data from regional multireference sites and limnological surveys, ecological training sets can be used to build transfer functions to infer major environmental variables (e.g., temperature, conductivity, DOC, and pH value) in a greater study area. The remote Polar regions are affected by bigger amplitude of climate change than elsewhere on this planet and make ecological training sets in this region so important.Freshwater ostracods from Arctic nvironments have the potential to hindcast glacial/interglacial and stadial/interstadial alaeoclimate variations. Various methods can be applied to fossil assemblages such as indicator species approach, modern analoguetechniques and transfer functions based on ecological training sets.The present training set combines data from the Canadian (Southampton Island at 63-65°N; Bylot Island at 72-73°N) and the Siberian (Central Yakutia at 61°N; Northeast Yakutia at 66°N; Lena Delta at 72°N) high latitudes with reference areas in Central Canada (Whapmagoostui-Kuujjuarapik at 50-55°N; Churchill at 58°N). A total of 75 localities were sampled during field work in 2005-2007. In general, life conditions for aquatic organisms such as freshwater ostracods in the high latitude regions are extremeand limited by short open water periods during the summer and strong variations of water temperatures in the shallow waters. The host waters in periglacial regions are affected by permafrost and thermokarst processes and mostly represented as polygonal ponds or thermokarst lakes in different stages of their development. Generally, the waters in our study area have a mean pH-value of 7.6, ranging from pH 6.0 to pH 9.2. They are characterised by low ionic contents (Condmean = 231μS*cm−1), but the training set includes sites between 4.4 μS*cm−1 (e.g., on Bylot Island) and 1433 μS*cm−1 (e.g., in Central Yakutia). A principal component analysis reveals that 88.5 % of the variability of the environmental data is explained by the first ordination axis corresponding to pH, conductivity and major cations (i.e., Ca, Na). The studied ostracod assemblages are characterised by dominance of single species indifferent regions, e.g., Cyclocypris ovum on Bylot Island, Fabaeformiscandona pedata in the Lena Delta. In general, the species diversity in northern latitudes is relatively low due to the harsh environmental conditions affecting ostracods ontogeny. In total, 16 species were used in the presented data set.Further implementation of the ecological training set into transfer functions for one or more variables are prosperous

    Control of Biological Exposure to UV Radiation in the Arctic Ocean: Comparison of the Roles of Ozone and Riverine Dissolved Organic Matter

    Get PDF
    Reports of severe stratospheric ozone depletion over the Arctic have heightened concern about the potential impact of rising ultraviolet-B (UV-B) radiation on north polar aquatic ecosystems. Our optical measurements and modelling results indicate that the ozone-related UV-B influence on food web processes in the Arctic Ocean is likely to be small relative to the effects caused by variation in the concentrations of natural UV-absorbing compounds, known as chromophoric dissolved organic matter(CDOM), that enter the Arctic basin via its large river inflows. The aim of our present study was to develop and apply a simple bio-optical index that takes into account the combined effects of attenuation by atmospheric ozone and water column CDOM, and photobiological weighting for high-latitude environments such as the Arctic Ocean. To this end, we computed values for a biologically effective UV dose rate parameter ('weighted transparency' or T*) based on underwater UV measurements in highlatitude lakes and rivers that discharge into the Arctic Ocean; measured incident UV radiation at Barrow, Alaska; and published biological weighting curves for UV-induced DNA damage and UV photoinhibition of photosynthesis. The results underscore how strongly the Arctic Ocean is influenced by riverine inputs: shifts in CDOM loading (e.g., through climate change, land-use practices, or changes in ocean circulation) can cause variations in biological UV exposure of much greater magnitude than ozone related effects

    Étude palĂ©olimnologique de l'histoire trophique du lac Saint-Charles, rĂ©servoir d'eau potable de la CommunautĂ© Urbaine de QuĂ©bec

    Get PDF
    Cette étude utilise une approche paléolimnologique pour reconstituer l'histoire trophique du réservoir d'eau potable de la Communauté Urbaine de Québec (CUQ), le lac Saint-Charles. Ce lac manifeste présentement un manque d'oxygÚne prÚs du fond à la fin de la stratification estivale et hivernale. L'étude révÚle des changements dans la communauté diatomifÚre fossile depuis environ les 150 derniÚres années. L'événement ayant entraßné le plus de changements biologiques et physico-chimiques dans le bassin est la transformation hydrologique engendrée par la construction d'un barrage en 1934 qui éleva le niveau du lac d'environ 1,5 à 2 mÚtres. Par conséquent, il y eut des changements dans la structure des communautés de diatomées avec des effets sur le ratio espÚces planctoniques / benthiques, sur la paléoproductivité et les caractéristiques physico-chimiques des sédiments suivant cette période. Les assemblages diatomifÚres indiquent que les conditions mésotrophes se sont maintenues pendant toute la période étudiée. L'analyse du phosphore total dans les sédiments et la reconstitution à partir des diatomées fossiles du phosphore total dans l'eau montrent une légÚre diminution de la concentration en phosphore avec le temps. Ces observations démontrent qu'il n'y a pas eu d'accélération du processus d'eutrophisation engendrée par les activités humaines. Par contre, l'analyse géochimique des sédiments révÚle un apport plus important de métaux depuis la fin du 19e siÚcle, qui atteint un plateau vers la fin des années 70.This study adopted a combined paleolimnological-limnological approach towards evaluating the trophic history of Lake Saint-Charles, the drinking water reservoir for a population of 305,000 in the Québec City (Canada) region. Our limnological measurements indicate that the lake is currently in a state of advanced mesotrophy. Water column profiles during late summer stratification (September) showed that the bottom waters were anoxic, enriched in phosphorus (up to 17 ”g total P L-1) and had a pH almost 2 units lower than the surface waters. Surface phytoplankton concentrations were high at this time of year with Chlorophyll a concentrations of up to 12 ”g·L-1. At the end of winter stratification, oxygen concentrations were below saturation at all depths, ranging from 72% immediately under the ice to 4% at the bottom of the water column. This tendency towards eutrophic conditions was offset, however, by a rapid flushing rate (mean hydraulic residence time=23 days). Because there are concerns that the lake has experienced accelerated nutrient enrichment due to increased human activities in its drainage basin, the objectives of our paleolimnological approach were to document the recent trophic history of this lake, to estimate the extent of recent changes in trophic status, and to identify critical periods of past anthropogenic disturbances from the fossils of siliceous algae (diatoms; class Bacillariophyceae) preserved in its sediments. Quantitative estimates of past total phosphorus (TP) concentrations in the water column of Lake Saint-Charles were obtained by applying a diatom-TP reconstruction model developed for 54 lakes located in south-eastern Ontario to fossil diatom assemblages from a 28 cm long sediment core. The timing of changes in the fossil diatom record was estimated by210 Pb dating. The study reveals changes in fossil diatom assemblage composition during the past ca. 150 years, with the most striking biological and physico-chemical changes occurring immediately after 1934. This date coincides with the construction of a dam, which raised the lake water level by 1.5-2 m. This modification was accompanied by significant shifts in diatom community structure, especially in the planktonic/benthic ratio (with increases in planktonic diatoms Cyclotella stelligera and Aulacoseira distans), and by changes in the physico-chemical characteristics of the sediments. Paleoproductivity increased at the same time, but remained more or less stable following conservation efforts between 1950 and 1970 (e.g., construction of a sewage treatment system). The organic matter content of the sediments showed an increase in the order of 20% between 1850 and 1950, after which it remained constant. Fossil diatom community structure indicates that mesotrophic conditions have prevailed during the recent history of Lake Saint-Charles, and that diatoms typical of eutrophic conditions never became established in the lake. The geochemical analysis of phosphorus in the sediments as well as the diatom-inferred quantitative reconstruction of lake water total phosphorus reveals a slight decrease in total phosphorus over time, from close to 17 ”g·L- prior to 1887 to about 13 ”g·L- 1 in recent times. These observations suggest that Lake Saint-Charles has not experienced significant recent changes in trophic status due to increased human activities in its drainage basin. However, our geochemical analyses show a sharp rise in metal concentrations (especially Fe, Mn, Cu, Pb and Zn), beginning in the late 19th century, reaching a plateau by the late 1970s, which may be attributed to increased atmospheric pollution since the beginning of intense human colonization in the lake's catchment and surrounding areas. This in combination with the advanced mesotrophic status of the lake indicates the ongoing need for careful management of the watershed to prevent further changes in this important urban water resource

    Sedimentary pigments as indicators of cyanobacterial dynamics in a hypereutrophic lake

    Get PDF
    Abstract Lac Saint-Augustin is an urban lake located on the outskirts of Quebec City, one of North America's oldest cities. Anthropogenic inputs from land clearing, agriculture, highway development and urbanization in the surrounding catchment have resulted in strong impacts on the limnology of the lake throughout the past three centuries. In recent years, this lake has experienced severe eutrophication, including persistent cyanobacterial blooms. In winter 2011, a sediment core was extracted from the deepest area of the lake. A detailed paleopigment analysis was used to assess eutrophication processes in the lake and to determine the timing and appearance of cyanobacterial blooms and their subsequent variability. Extracted chlorophyll a, its degradation products and 11 carotenoid pigments were identified and quantified via reverse-phase high performance liquid chromatography to examine relative changes in the phytoplankton. The results revealed large variations in the phytoplankton community structure of Lac SaintAugustin over the past 356 years. Chlorophyll a concentrations per unit organic matter (OM) increased significantly from the base of the core to present day, rising more than 15-fold from 18.4 lg (g OM) -1 at the base of the core to 287 lg (g OM) in the most recent strata. Biostratigraphical analysis revealed three major periods of enrichment, with episodes of cyanobacterial abundance from the 1890s onwards. The greatest changes occurred in the most recent period (from the 1960s to the present) relative to earlier periods, with pigment increases for all phytoplankton groups. The cyanobacterial pigments canthaxanthin, echinenone and zeaxanthin (also a marker for green algae) showed concentrations in the surface sediments that were significantly above values at the bottom of the core, and these differences were large, even giving consideration to the lesser pigment degradation near the surface. Overall, the results indicate that cyanobacterial blooms are not a recent feature of Lac Saint-Augustin but began to occur soon after catchment modification 150 years ago. The pigment records also imply that cyanobacterial and associated algal populations have risen to unprecedented levels over the last few decades of ongoing development of the Lac Saint-Augustin catchment. This study highlights the utility of multiple pigment analysis of lake sediments for identifying the timing and magnitude of anthropogenic impacts

    Long-term Environmental Change in Arctic and Antarctic Lakes.

    Get PDF

    Biodiversity patterns of Arctic diatom assemblages in lakes and streams: Current reference conditions and historical context for biomonitoring

    Get PDF
    Comprehensive assessments of contemporary diatom distributions across the Arctic remain scarce. Furthermore, studies tracking species compositional differences across space and time, as well as diatom responses to climate warming, are mainly limited to paleolimnological studies due to a lack of routine monitoring in lakes and streams across vast areas of the Arctic. The study aims to provide a spatial assessment of contemporary species distributions across the circum-Arctic, establish contemporary biodiversity patterns of diatom assemblages to use as reference conditions for future biomonitoring assessments, and determine pre-industrial baseline conditions to provide historical context for modern diatom distributions. Diatom assemblages were assessed using information from ongoing regulatory monitoring programmes, individual research projects, and from surface sediment layers obtained from lake cores. Pre-industrial baseline conditions as well as the nature, direction and magnitude of changes in diatom assemblages over the pastc.200 years were determined by comparing surface sediment samples (i.e. containing modern assemblages) with a sediment interval deposited prior to the onset of significant anthropogenic activities (i.e. containing pre-1850 assemblages), together with an examination of diatoms preserved in contiguous samples from dated sediment cores. We identified several biotypes with distinct diatom assemblages using contemporary diatom data from both lakes and streams, including a biotype typical for High Arctic regions. Differences in diatom assemblage composition across circum-Arctic regions were gradual rather than abrupt. Species richness was lowest in High Arctic regions compared to Low Arctic and sub-Arctic regions, and higher in lakes than in streams. Dominant diatom taxa were not endemic to the Arctic. Species richness in both lakes and streams reached maximum values between 60 degrees N and 75 degrees N but was highly variable, probably reflecting differences in local and regional environmental factors and possibly sampling effort. We found clear taxon-specific differences between contemporary and pre-industrial samples that were often specific to both ecozone and lake depth. Regional patterns of species turnover (beta-diversity) in the pastc.200 years revealed that regions of the Canadian High Arctic and the Hudson Bay Lowlands to the south showed most compositional change, whereas the easternmost regions of the Canadian Arctic changed least. As shown in previous Arctic diatom studies, global warming has already affected these remote high latitude ecosystems. Our results provide reference conditions for future environmental monitoring programmes in the Arctic. Furthermore, diatom taxa identification and harmonisation require improvement, starting with circum-Arctic intercalibrations. Despite the challenges posed by the remoteness of the Arctic, our study shows the need for routine monitoring programmes that have a wide geographical coverage for both streams and lakes

    Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes

    Get PDF
    Remote lakes are usually unaffected by direct human influence, yet they receive inputs of atmospheric pollutants, dust, and other aerosols, both inorganic and organic. In remote, alpine lakes, these atmospheric inputs may influence the pool of dissolved organic matter, a critical constituent for the biogeochemical functioning of aquatic ecosystems. Here, to assess this influence, we evaluate factors related to aerosol deposition, climate, catchment properties, and microbial constituents in a global dataset of 86 alpine and polar lakes. We show significant latitudinal trends in dissolved organic matter quantity and quality, and uncover new evidence that this geographic pattern is influenced by dust deposition, flux of incident ultraviolet radiation, and bacterial processing. Our results suggest that changes in land use and climate that result in increasing dust flux, ultraviolet radiation, and air temperature may act to shift the optical quality of dissolved organic matter in clear, alpine lakes

    Sediment accumulation rates in subarctic lakes: Insights into age-depth modeling from 22 dated lake records from the Northwest Territories, Canada

    Get PDF
    Age-depth modeling using Bayesian statistics requires well-informed prior information about the behavior of sediment accumulation. Here we present average sediment accumulation rates (represented as deposition times, DT, in yr/cm) for lakes in an Arctic setting, and we examine the variability across space (intra- and inter-lake) and time (late Holocene). The dataset includes over 100 radiocarbon dates, primarily on bulk sediment, from 22 sediment cores obtained from 18 lakes spanning the boreal to tundra ecotone gradients in subarctic Canada. There are four to twenty-five radiocarbon dates per core, depending on the length and character of the sediment records. Deposition times were calculated at 100-year intervals from age-depth models constructed using the 'classical' age-depth modeling software Clam. Lakes in boreal settings have the most rapid accumulation (mean DT 20±10 yr/cm), whereas lakes in tundra settings accumulate at moderate (mean DT 70±10 yr/cm) to very slow rates, (>100yr/cm). Many of the age-depth models demonstrate fluctuations in accumulation that coincide with lake evolution and post-glacial climate change. Ten of our sediment cores yielded sediments as old as c. 9000cal BP (BP=years before AD 1950). From between c. 9000cal BP and c. 6000cal BP, sediment accumulation was relatively rapid (DT of 20-60yr/cm). Accumulation slowed between c. 5500 and c. 4000cal BP as vegetation expanded northward in response to warming. A short period of rapid accumulation occurred near 1200cal BP at three lakes. Our research will help inform priors in Bayesian age modeling

    High methylmercury in Arctic and subarctic ponds is related to nutrient levels in the warming eastern Canadian Arctic

    Get PDF
    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L−1). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3−2.2 ng L−1) than polygonal ponds (0.1−0.3 ng L−1) or lakes (<0.1 ng L−1). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1−3.1 ng L−1). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems

    Climate-driven regime shifts in the biological communities of arctic lakes

    Get PDF
    Fifty-five paleolimnological records from lakes in the circumpolar Arctic reveal widespread species changes and ecological reorganizations in algae and invertebrate communities since approximately anno Domini 1850. The remoteness of these sites, coupled with the ecological characteristics of taxa involved, indicate that changes are primarily driven by climate warming through lengthening of the summer growing season and related limnological changes. The widespread distribution and similar character of these changes indicate that the opportunity to study arctic ecosystems unaffected by human influences may have disappeared. © 2005 by The National Academy of Sciences of the USA
    • 

    corecore