1,855 research outputs found
Accelerated convergence method for fast Fourier transform simulation of coupled cavities
Fast Fourier transform (FFT) simulation was used to calculate the power and spatial distribution of resonant fields in optical cavities. This is an important tool when characterizing the effect of imperfect geometry and mirror aberrations. This method is, however, intrinsically slow when the cavities are of relatively high finesse. When this is the case, an accelerated convergence scheme may be used to calculate the steady-state cavity field with a speed that is orders of magnitude faster. The rate of convergence of this method, however, is unpredictable, as many different factors may detrimentally affect its performance. In addition, its use in multiple cavity configurations is not well understood. An in-depth study of the limitations and optimization of this method is presented, together with a formulation of its use in multiple cavity configurations. This work has not only resulted in consistent improvement in performance and stability of the accelerated convergence method but also allows the simulation of optical configurations, which would not previously have been possible
Superconducting diamagnetic fluctuations in ropes of carbon nanotubes
We report low-temperature magnetisation measurements on a large number of
purified ropes of single wall carbon nanotubes. In spite of a large
superparamagnetic contribution due to the small ferromagnetic catalytical
particles still present in the sample, at low temperature () and low
magnetic field (), a diamagnetic signal is detectable. This low
temperature diamagnetism can be interpreted as the Meissner effect in ropes of
carbon nanotubes which have previously been shown to exhibit superconductivity
from transport measurements.Comment: 10 pages 3 figure
Ultra-Wideband Microwave Imaging of Heterogeneities
International audienceThe technique of time-reversal acoustics was applied to image a bottle filled with saline, using an eight element Vivaldi antenna array with frequency bandwidth 2 to 8 GHz. At these short length scales, a smooth three-dimensional image of the bottle was obtained, with the usual limitations imposed by limited offset and frequency. Time snapshots of the wavefield evolution in reversed time are presented for two real data sets. The first, shows the focusing for the single target of the bottle, while the second demonstrates the principle for two targets
Pressure dependence of Raman modes in double wall carbon nanotubes filled with α-Fe.
The preparation of highly anisotropic one-dimensional (1D) structures confined into carbon nanotubes (CNTs) in general is a key objective in CNTs research. In this work, the capillary effect was used to fill double wall carbon nanotubes with iron. The samples are characterized by Mössbauer and Raman spectroscopy, transmission electron microscopy, scanning area electron diffraction, and magnetization. In order to investigate their structural stability and compare it with that of single wall carbon nanotubes (SWNTs), elucidating the differences induced by the inner-outer tube interaction, unpolarized Raman spectra of tangential modes of double wall carbon nanotubes (DWNTs) filled with 1D nanocrystallin α-Fe excited with 514 nm were studied at room temperature and elevated pressure. Up to 16 GPa we find a pressure coefficient for the internal tube of 4.3 cm−1 GPa−1 and for the external tube of 5.5 cm−1 GPa−1. In addition, the tangential band of the external and internal tubes broadens and decreases in amplitude. All findings lead to the conclusion that the outer tube acts as a protection shield for the inner tubes (at least up 16 GPa). Structural phase transitions were not observed in this range of pressure
Methylglyoxal Produced by Amyloid- Peptide-Induced Nitrotyrosination of Triosephosphate Isomerase Triggers Neuronal Death in Alzheimer’s Disease
Amyloid-β peptide (Aβ) aggregates induce nitro-oxidative stress, contributing to the characteristic neurodegeneration found in Alzheimer's disease (AD). One of the most strongly nitrotyrosinated proteins in AD is the triosephosphate isomerase (TPI) enzyme which regulates glycolytic flow, and its efficiency decreased when it is nitrotyrosinated. The main aims of this study were to analyze the impact of TPI nitrotyrosination on cell viability and to identify the mechanism behind this effect. In human neuroblastoma cells (SH-SY5Y), we evaluated the effects of Aβ42 oligomers on TPI nitrotyrosination. We found an increased production of methylglyoxal (MG), a toxic byproduct of the inefficient nitro-TPI function. The proapoptotic effects of Aβ42 oligomers, such as decreasing the protective Bcl2 and increasing the proapoptotic caspase-3 and Bax, were prevented with a MG chelator. Moreover, we used a double mutant TPI (Y165F and Y209F) to mimic nitrosative modifications due to Aβ action. Neuroblastoma cells transfected with the double mutant TPI consistently triggered MG production and a decrease in cell viability due to apoptotic mechanisms. Our data show for the first time that MG is playing a key role in the neuronal death induced by Aβ oligomers. This occurs because of TPI nitrotyrosination, which affects both tyrosines associated with the catalytic center
An insulating grid spacer for large-area MICROMEGAS chambers
We present an original design for large area gaseous detectors based on the MICROMEGAS technology. This technology incorporates an insulating grid, sandwiched between the micro-mesh and the anode-pad plane, which provides an uniform 200 m amplification gap. The uniformity of the amplification gap thickness has been verified under several experimental conditions. The gain performances of the detector are presented and compared to the values obtained with detectors using cylindrical micro spacers. The new design presents several technical and financial advantages
Reconstruction of the gravitational wave signal during the Virgo science runs and independent validation with a photon calibrator
The Virgo detector is a kilometer-scale interferometer for gravitational wave
detection located near Pisa (Italy). About 13 months of data were accumulated
during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and
September 2011, with increasing sensitivity.
In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the
gravitational wave strain time series from the detector signals is
described. The standard consistency checks of the reconstruction are discussed
and used to estimate the systematic uncertainties of the signal as a
function of frequency. Finally, an independent setup, the photon calibrator, is
described and used to validate the reconstructed signal and the
associated uncertainties.
The uncertainties of the time series are estimated to be 8% in
amplitude. The uncertainty of the phase of is 50 mrad at 10 Hz with a
frequency dependence following a delay of 8 s at high frequency. A bias
lower than and depending on the sky direction of the GW is
also present.Comment: 35 pages, 16 figures. Accepted by CQ
Performance of prototypes for the ALICE electromagnetic calorimeter
The performance of prototypes for the ALICE electromagnetic sampling
calorimeter has been studied in test beam measurements at FNAL and CERN. A
array of final design modules showed an energy resolution of about
11% / 1.7 % with a uniformity of the response
to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV.
The electromagnetic shower position resolution was found to be described by 1.5
mm 5.3 mm /. For an electron identification
efficiency of 90% a hadron rejection factor of was obtained.Comment: 10 pages, 10 figure
- …
