1,706 research outputs found

    Defining metabolically healthy obesity: role of dietary and lifestyle factors

    Get PDF
    Background: There is a current lack of consensus on defining metabolically healthy obesity (MHO). Limited data on dietary and lifestyle factors and MHO exist. The aim of this study is to compare the prevalence, dietary factors and lifestyle behaviours of metabolically healthy and unhealthy obese and non-obese subjects according to different metabolic health criteria. Method: Cross-sectional sample of 1,008 men and 1,039 women aged 45-74 years participated in the study. Participants were classified as obese (BMI ≥30kg/m2) and non-obese (BMI <30kg/m2). Metabolic health status was defined using five existing MH definitions based on a range of cardiometabolic abnormalities. Dietary composition and quality, food pyramid servings, physical activity, alcohol and smoking behaviours were examined. Results: The prevalence of MHO varied considerably between definitions (2.2% to 11.9%), was higher among females and generally increased with age. Agreement between MHO classifications was poor. Among the obese, prevalence of MH was 6.8% to 36.6%. Among the non-obese, prevalence of metabolically unhealthy subjects was 21.8% to 87%. Calorie intake, dietary macronutrient composition, physical activity, alcohol and smoking behaviours were similar between the metabolically healthy and unhealthy regardless of BMI. Greater compliance with food pyramid recommendations and higher dietary quality were positively associated with metabolic health in obese (OR 1.45-1.53 unadjusted model) and non-obese subjects (OR 1.37-1.39 unadjusted model), respectively. Physical activity was associated with MHO defined by insulin resistance (OR 1.87, 95% CI 1.19-2.92, p = 0.006)

    A Simple Model of Liquid-liquid Phase Transitions

    Full text link
    In recent years, a second fluid-fluid phase transition has been reported in several materials at pressures far above the usual liquid-gas phase transition. In this paper, we introduce a new model of this behavior based on the Lennard-Jones interaction with a modification to mimic the different kinds of short-range orientational order in complex materials. We have done Monte Carlo studies of this model that clearly demonstrate the existence of a second first-order fluid-fluid phase transition between high- and low-density liquid phases

    Dephasing of Electrons by Two-Level Defects in Quantum Dots

    Full text link
    The electron dephasing time Ï„Ï•\tau_{\phi} in a diffusive quantum dot is calculated by considering the interaction between the electron and dynamical defects, modelled as two-level system. Using the standard tunneling model of glasses, we obtain a linear temperature dependence of 1/Ï„Ï•1/\tau_{\phi}, consistent with the experimental observation. However, we find that, in order to obtain dephasing times on the order of nanoseconds, the number of two-level defects needs to be substantially larger than the typical concentration in glasses. We also find a finite system-size dependence of Ï„Ï•\tau_{\phi}, which can be used to probe the effectiveness of surface-aggregated defects.Comment: two-column 9 page

    V605 Aquilae: a born again star, a nova or both?

    Full text link
    V605 Aquilae is today widely assumed to have been the result of a final helium shell flash occurring on a single post-asymptotic giant branch star. The fact that the outbursting star is in the middle of an old planetary nebula and that the ejecta associated with the outburst is hydrogen deficient supports this diagnosis. However, the material ejected during that outburst is also extremely neon rich, suggesting that it derives from an oxygen-neon-magnesium star, as is the case in the so-called neon novae. We have therefore attempted to construct a scenario that explains all the observations of the nebula and its central star, including the ejecta abundances. We find two scenarios that have the potential to explain the observations, although neither is a perfect match. The first scenario invokes the merger of a main sequence star and a massive oxygen-neon-magnesium white dwarf. The second invokes an oxygen-neon-magnesium classical nova that takes place shortly after a final helium shell flash. The main drawback of the first scenario is the inability to determine whether the ejecta would have the observed composition and whether a merger could result in the observed hydrogen-deficient stellar abundances observed in the star today. The second scenario is based on better understood physics, but, through a population synthesis technique, we determine that its frequency of occurrence should be very low and possibly lower than what is implied by the number of observed systems. While we could not envisage a scenario that naturally explains this object, this is the second final flash star which, upon closer scrutiny, is found to have hydrogen-deficient ejecta with abnormally high neon abundances. These findings are in stark contrast with the predictions of the final helium shell flash and beg for an alternative explanation.Comment: 8 pages, 1 figures, 2 tables, accepted for MNRAS. Better title and minor corrections compared to previous versio

    A data-driven, meaningful, easy to interpret, standardised accelerometer outcome variable for global surveillance

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Objectives: Our aim is to demonstrate how a data-driven accelerometer metric, the acceleration above which a person’s most active minutes are accumulated, can a) quantify the prevalence of meeting current physical activity guidelines for global surveillance and b) moving forward, could inform accelerometer-driven physical activity guidelines. Unlike cut-point methods, the metric is population-independent (e.g. age) and potentially comparable across datasets. Design: Cross-sectional, secondary data analysis. Methods: Analyses were carried out on five datasets using wrist-worn accelerometers: children (N=145), adolescent girls (N=1669), office workers (N=114), pre- (N=1218) and post- (N=1316) menopausal women, and adults with type 2 diabetes (N=475). Open-source software (GGIR) was used to generate the magnitude of acceleration above which a person’s most active 60, 30 and 2 minutes are accumulated: M60ACC; M30ACC and M2ACC, respectively. Results: The proportion of participants with M60ACC (children) and M30ACC (adults) values higher than accelerations representative of brisk walking (i.e., moderate-to-vigorous physical activity) ranged from 17-68% in children and 15%-81% in adults, tending to decline with age. The proportion of pre-and postmenopausal women with M2ACC values meeting thresholds for bone health ranged from 6-13%. Conclusions: These metrics can be used for global surveillance of physical activity, including assessing prevalence of meeting current physical activity guidelines. As accelerometer and corresponding health data accumulate it will be possible to interpret the metrics relative to age- and sex- specific norms and derive evidence-based physical activity guidelines directly from accelerometer data for use in future global surveillance. This is where the potential advantages of these metrics lie

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns

    Thermodynamic Behavior of a Model Covalent Material Described by the Environment-Dependent Interatomic Potential

    Full text link
    Using molecular dynamics simulations we study the thermodynamic behavior of a single-component covalent material described by the recently proposed Environment-Dependent Interatomic Potential (EDIP). The parameterization of EDIP for silicon exhibits a range of unusual properties typically found in more complex materials, such as the existence of two structurally distinct disordered phases, a density decrease upon melting of the low-temperature amorphous phase, and negative thermal expansion coefficients for both the crystal (at high temperatures) and the amorphous phase (at all temperatures). Structural differences between the two disordered phases also lead to a first-order transition between them, which suggests the existence of a second critical point, as is believed to exist for amorphous forms of frozen water. For EDIP-Si, however, the unusual behavior is associated not only with the open nature of tetrahedral bonding but also with a competition between four-fold (covalent) and five-fold (metallic) coordination. The unusual behavior of the model and its unique ability to simulation the liquid/amorphous transition on molecular-dynamics time scales make it a suitable prototype for fundamental studies of anomalous thermodynamics in disordeered systems.Comment: 48 pages (double-spaced), 13 figure

    Separation of Anti-Proliferation and Anti-Apoptotic Functions of Retinoblastoma Protein through Targeted Mutations of Its A/B Domain

    Get PDF
    BACKGROUND: The human retinoblastoma susceptibility gene encodes a nuclear phosphoprotein RB, which is a negative regulator of cell proliferation. The growth suppression function of RB requires an evolutionarily conserved A/B domain that contains two distinct peptide-binding pockets. At the A/B interface is a binding site for the C-terminal trans-activation domain of E2F. Within the B-domain is a binding site for proteins containing the LxCxE peptide motif. METHODOLOGY/PRINCIPLE FINDINGS: Based on the crystal structure of the A/B domain, we have constructed an RB-K530A/N757F (KN) mutant to disrupt the E2F- and LxCxE-binding pockets. The RB-K530A (K) mutant is sufficient to inactivate the E2F-binding pocket, whereas the RB-N757F (N) mutant is sufficient to inactivate the LxCxE-binding pocket. Each single mutant inhibits cell proliferation, but the RB-KN double mutant is defective in growth suppression. Nevertheless, the RB-KN mutant is capable of reducing etoposide-induced apoptosis. CONCLUSION/SIGNIFICANCE: Previous studies have established that RB-dependent G1-arrest can confer resistance to DNA damage-induced apoptosis. Results from this study demonstrate that RB can also inhibit apoptosis independent of growth suppression
    • …
    corecore