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Abstract 

Objectives:  Our aim is to demonstrate how a data-driven accelerometer metric, the acceleration above which 

a person’s most active minutes are accumulated, can a) quantify the prevalence of meeting current physical 

activity guidelines for global surveillance and b) moving forward, could inform accelerometer-driven physical 

activity guidelines. Unlike cut-point methods, the metric is population-independent (e.g. age) and potentially 

comparable across datasets. Design: Cross-sectional, secondary data analysis. Methods: Analyses were 

carried out on five datasets using wrist-worn accelerometers: children (N=145), adolescent girls (N=1669), 

office workers (N=114), pre- (N=1218) and post- (N=1316) menopausal women, and adults with type 2 

diabetes (N=475). Open-source software (GGIR) was used to generate the magnitude of acceleration above 

which a person’s most active 60, 30 and 2 minutes are accumulated: M60ACC; M30ACC and M2ACC, 

respectively. Results: The proportion of participants with M60ACC (children) and M30ACC (adults) values 

higher than accelerations representative of brisk walking (i.e., moderate-to-vigorous physical activity) ranged 

from 17-68% in children and 15%-81% in adults, tending to decline with age. The proportion of pre-and post-

menopausal women with M2ACC values meeting thresholds for bone health ranged from 6-13%. Conclusions: 

These metrics can be used for global surveillance of physical activity, including assessing prevalence of 

meeting current physical activity guidelines. As accelerometer and corresponding health data accumulate it 

will be possible to interpret the metrics relative to age- and sex- specific norms and derive evidence-based 

physical activity guidelines directly from accelerometer data for use in future global surveillance. This is 

where the potential advantages of these metrics lie. 

Keywords: physical activity; population; acceleration; measurement; research-grade accelerometer; wrist-

worn 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edge Hill University Research Information Repository

https://core.ac.uk/display/227104777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Practical implications 

• The magnitude of acceleration above which a person’s most active minutes are accumulated 

throughout the day could be useful for monitoring and surveillance, e.g. prevalence of meeting 

physical activity guidelines 

• Unlike cut-point methods, the metrics are population-independent (e.g. age), do not rely on calibration 

studies, and no person scores zero 

• The metrics can be translated post-hoc in terms of walking/running, providing a public health friendly 

interpretation of the results relevant to a range of clinical populations 

• These metrics will encourage use of accelerometer data for global surveillance of meeting activity 

guidelines. Further, as accelerometer and corresponding health data accumulate it will be possible to 

use the metrics to derive evidence-based physical activity guidelines directly from accelerometer data 

that express recommendations in terms of representative activity type, e.g. ‘brisk walking’. 

 

Introduction 

 

National and/or large-scale surveys of physical activity through accelerometers are now commonplace in 

many countries worldwide1-5. The World Health Organisation’s recent Global Activity Action Plan on 

Physical Activity 2018-20306 highlights monitoring and surveillance, using robust and reliable data, as the 

cornerstone to the implementation and evaluation of national strategies. Accelerometers provide a valid 

measure of physical activity7; however, a lack of consensus on robust and consistent methods to reduce and 

analyse data to create meaningful and easy to interpret outcome variables, is hampering monitoring and 

evaluation activities. 

For example, epidemiological studies and surveillance studies frequently create variables from accelerometer-

assessed moderate-to-vigorous physical activity (MVPA) using intensity cut-points. The problems with using 

cut-points to quantify activity are well documented8-11 but, briefly, include: (1) cut-points are protocol-, and 

population- (e.g. age-group) specific, leading to results that are not comparable across studies8-10; (2) two 

participants with similar levels of activity score very differently if one has activity falling just above the cut-

point and one has activity falling just below the cut-point; (3) many participants fail to obtain any activity 

above cut-points (particularly in the vigorous range), consequently a large number of people simply score zero 
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minutes. Recently, in an examination of how cut-points influence estimates of physical activity, Migueles et 

al.11,p1 stated that it was ‘not possible (and probably will never be) to know the prevalence of meeting the 

physical activity guidelines based on accelerometer data’. Clearly a new approach to analysing and 

interpreting accelerometer data is needed. 

An alternative approach is to identify the minimum acceleration value above which a person’s most active 

minutes, for example 30 mins (M30ACC), is accumulated. The active minutes can be accumulated in any way 

across the day, with no need for the activity to be in bouts, in line with recent physical activity 

recommendations12. With this approach the metric is population-independent and derived from directly 

measured acceleration, thus not relying on assumptions as cut-points do9, and the intensity is captured 

regardless of level of activity with no person scoring zero. This bears similarities to the peak 30 min walking 

cadence (steps/min) proposed by Tudor-Locke and colleagues13 as a practical estimate of ‘best natural effort’ 

during habitual physical activity.  

Moving forward, as accelerometer and corresponding health data accumulate, these data-driven population-

independent metrics could be used to inform accelerometer-driven physical activity guidelines as 

recommended by Troiano et al.10, rather than inappropriately evaluating physical activity assessed by 

accelerometer cut-points to guidelines developed from self-report data, which are conceptually different10. For 

example, the M30ACC and/or M60ACC that is positively associated with a given health marker, e.g. adiposity, 

could be determined. This M30ACC and/or M60ACC value could then be used for surveillance which, 

importantly, would facilitate surveillance using the same physical activity metric as used to garner the 

evidence. As with the peak cadence13, the metric itself is population independent, but norms will vary, e.g. by 

age and sex. As data accumulate, it would be possible to interpret the M30ACC and M60ACC relative to age- and 

sex- specific norms and/or relative to values associated with health markers.  

To facilitate public-health recommendations, translation of the metrics to public-health friendly representative 

activity types is desirable, e.g. brisk walking, and/or MVPA. This translation is necessarily population-

specific and thus bears similarities to cut-point analyses. However, crucially this is only in the translation of 

the data for activity recommendations because all analyses are carried out on the population-independent 

metrics9. In contrast, when using cut-points, thresholds are imposed on the data from the outset to collapse 
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data into categories for analysis, rendering it impossible to subsequently compare any datasets deploying 

different cut-points.  

For example, assume that a child has an M60ACC value of 225 mg. Currently, we do not have the data to 

compare this to accelerometer-driven physical activity guidelines; however, we can assess whether the child is 

meeting the current 60 min daily MVPA guideline12 by comparing their M60ACC value to one of the MVPA 

cut-points available. According to the 200 mg MVPA cut-point published by Hildebrand et al.14, the child 

exceeds the 60 minutes of MVPA per day recommendations12, while according to a more stringent 250 mg 

MVPA cut-point published by Phillips et al.15, the child does not quite reach the recommendations. If a cut-

point approach had been used to analyse the data, the child’s score could not be compared to any alternative 

cut-point or threshold.  

For the purposes of a simple demonstration of how these metrics could be used for surveillance of adherence 

to current physical activity guidelines12, we looked at the daily average acceleration above which the most 

active 30 mins (M30ACC, adults) or 60 mins (M60ACC, children) was obtained. It would be possible to alter the 

number of minutes over which the minimum acceleration is considered, depending on the health outcome of 

interest or the guideline being assessed. For example, in a large cross-sectional observational study, Stiles et 

al.16 demonstrated that accumulating 1-2 minutes of accelerometer-assessed high intensity activity, equivalent 

to running, was associated with bone health in pre- and post-menopausal women.  

The primary aim of this paper is to demonstrate how the acceleration above which a person’s most active 

minutes are accumulated, can be used to quantify prevalence of meeting existing physical activity guidelines. 

A secondary aim is to illustrate that, as accelerometer and corresponding health data accumulate, there is 

potential for these population-independent metrics to be used to inform accelerometer-driven physical activity 

guidelines. 

Methods 

Secondary data analyses were carried out on five diverse datasets: 10 y old children17, adolescent girls18,19, 

adult office workers20, pre- and post-menopausal women16, and adults with type 2 diabetes21. All participants 

gave assent (children and adolescent girls) or informed consent (adults). Parents/guardians of the children 
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gave written informed consent and parents/guardians of the adolescent girls returned an opt-out consent form 

if they did not want their child to participate. All studies received the appropriate institutional ethics approval.  

In all samples, wrist worn accelerometers were worn 24 h a day for up to 7 days. The children and adult office 

workers wore the ActiGraph GT9X Link (ActiGraph, Pensacola, FL, USA), the adolescent girls and the adults 

with type 2 diabetes wore the GENEActiv (ActivInsights Ltd, Cambridgeshire, UK) and the pre- and post-

menopausal women wore the Axivity AX3 (Axivity, Newcastle, UK). The pre- and post-menopausal women 

wore the monitor on their dominant wrist, all other samples wore monitors on the non-dominant wrist. All 

monitors were initialised to record accelerations at 100 Hz, except the adult office workers whose monitors 

were initialised at 30 Hz. 

ActiGraphs were initialised and downloaded using ActiLife version 6.11.9 (ActiGraph, Pensacola, FL, USA). 

Data were saved in raw format as GT3X files, before being converted to raw csv file format for signal 

processing. GENEActivs were initialised and data downloaded in binary format using GENEActiv PC 

(version 3.1). Axivity data were downloaded from UK Biobank in .cwa format, auto-calibrated, resampled 

(100 Hz) and converted to .wav format using open-source software (Omgui Version 1.0.0.28; Open 

Movement, Newcastle, UK). 

All accelerometer files were processed and analysed with R-package GGIR version 1.6-7 (http://cran.r-

project.org)22,23. Signal processing in GGIR included auto-calibration using local gravity as a reference22 

(apart from the Axivity files which were auto-calibrated when converted to .wav files); detection of sustained 

abnormally high values; detection of non-wear; and calculation of the average magnitude of dynamic 

acceleration corrected for gravity (Euclidean Norm minus 1 g, ENMO). These were averaged over 1 or 5 s 

epochs (1s: pre- and post-menopausal women (UK Biobank), 5 s: children, adolescent girls, adult office 

workers and adults with type 2 diabetes) and expressed in milli-gravitational units (mg). Note that as the 

average over an epoch is used the values are independent of epoch duration. 

Participants were excluded if their accelerometer files showed: post-calibration error greater than 0.01 g (10 

mg), fewer than three days of valid wear (defined as >16 h per day), or wear data wasn’t present for each 15 

min period of the 24 h cycle, i.e. data from at least one day of measurement had to be present for each 15 min 
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period. The following metrics were generated and averaged across all valid days: average acceleration; 

intensity gradient (intensity distribution21); acceleration above which a person’s most active X minutes 

(MXACC) are accumulated: M60ACC (mg); M30ACC (mg), M2ACC (mg), (within the GGIR package, these 

metrics are obtained in part2 using: qlevels (0,24 hours): 1380/1440, 1410/1440 and 1438/1440). These 

MXACC statistics rank the acceleration for each epoch during the day in descending order to obtain the 

acceleration above which the person’s most active X minutes are accumulated. Note this differs from the peak 

cadence described by Tudor-Locke et al.13, which is the average of the cadence for the peak 30 minutes. As 

acceleration measured at the dominant wrist is approximately 10% higher than the non-dominant24, 

magnitudes of M60ACC, M30ACC and M2ACC were reduced by 10% for dominant wrist placement (pre- and 

post-menopausal women). 

Analyses: Descriptive statistics were calculated using mean (standard deviation (SD)) for continuous variables 

and percentage for categorical variables. 

Percentiles (5th - 95th percentile) were graphed for females (all samples) and males (where available) for the 

M60ACC, M30ACC and M2ACC. Presenting percentiles for each metric illustrates the magnitude of the most 

active X minutes, from the least to the most active participants, within each sample. To address our primary 

aim, the proportion of each sample meeting the MVPA physical activity guidelines, operationalised for the 

purposes of this demonstration as a daily average of 30 min for adults and 60 mins for children and 

adolescents, was calculated. For MVPA, we estimated acceleration values representative of a brisk walk (5 

km/h,  3.6 METs: 170 mg adults; 200 mg children14) and of a fast walk (5.6 km/h,  4.5 METs: 250 mg 

adults; 300 mg children14,25,26). To do this we took the MET values associated with the walking speeds from 

activity energy expenditure compendiums for adults25 and children26, converted these to VO2 (assuming 1 

MET = 3.5 ml/kg/min for adults25 and 1 MET = 5 ml/kg/min for children26), then used the child and adult 

regression equations presented by Hildebrand et al14 to obtain estimates of acceleration values representative 

of brisk and fast walking. In addition, the proportion of pre- and post-menopausal women meeting the recently 

proposed accelerometer-driven guide of 2 min high-intensity activity associated with bone health16 was 

calculated. The thresholds (>1000 mg (medium run) pre-menopausal, > 750 mg, post-menopausal (slow run)) 

were generated using dominant wrist data16, so are adjusted by -10%24.  
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Results 

Valid accelerometer data files were available for 64% of 10 y old children (N = 145, age (mean (SD)) = 

9.6(0.3) y, 57% female), 96% of adolescent girls (age 11-12 y: N = 974, age 12.3(0.4) y; age 13-14y, age 

13.6(0.4) y, 100% female), 78% of adult office workers (N = 114, age 41.2(10.9) y, 80% female) and 99% of 

adults with type 2 diabetes (N = 475, age 64.2(8.7) y, 36% female). All accelerometer files for the pre- and 

post-menopausal women from UK Biobank meeting the criteria of Stiles et al.16 were included (N = 1218 pre-

menopausal, age 46.2(3.9) y, N = 1316 post-menopausal, age 59.0(5.1) y). Further descriptive characteristics 

are presented in Supplementary Material. As expected, physical activity volume (average acceleration) tended 

to decrease and the intensity distribution (intensity gradient) worsen with increasing sample mean age, see 

Supplementary Material.  

Figures 1 and 2 show percentile plots for M60ACC, M30ACC and M2ACC for females and males, respectively, in 

order of increasing sample mean age. Stick figures mark accelerations associated with a brisk walk (5 km/h), 

fast walk (5.6 km/h) and slow run (>8 km/h) on the y-axes to illustrate how the data could be translated in a 

public-health friendly way14. The expected age-related decline in intensity of physical activity appeared to be 

relatively greater the fewer minutes considered (i.e. there is a steeper drop from childhood to adulthood for the 

M2ACC than the M30ACC), but also for higher percentiles (i.e. higher intensity; the top percentiles dropped 

more steeply than the lower percentiles) within a given outcome (Figures 1b-c, 2b-c). Sex differences were 

most evident in 10 y old children, with the intensity of boys’ activity greater than that of girls’ (Figures 1a-c 

compared to 2a-c).  

Table 1 shows the proportion of each sample meeting MVPA guidelines operationalised as 60 min per day 

(children) or 30 min per day (adults) of brisk walking or fast walking. The MXACC above which the most 

active time is accumulated is shown for those meeting and not meeting the guidelines. The proportions of pre- 

and post-menopausal women meeting the recent accelerometer-derived guide proposed for bone health (2 

minutes >1000 mg (medium run) pre-menopausal, >750 mg (slow run) post-menopausal)16 were 6% and 13%, 

respectively (Figure 1c). 
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Supplementary material. Descriptive characteristics of the five datasets.  

  9-10 y old 

children  

 

Adolescent girls 

 

Adult office 

workers 

 

Women: UK Biobank 

 

Adults with type 

2 diabetes  

   

(N=145) 

11-12 y 

(N=974) 

13-14 y 

(N=695) 

 

(N=114) 

Pre-menopausal 

(N=1218) 

Post-menopausal 

(N=1316) 

 

(N = 475) 
 

Sex (%) 
 

Males 
 

42.8 
 

 

0 
 

0 20.4 0 0 64 

 Females 
 

57.2 100 100 79.6 100 100 36 

Age (y) 
 

 9.6 (0.3) 12.3 (0.4) 13.6 (0.4) 41.2 (10.9) 46.2 (3.9) 59.0 (5.1) 64.2 (8.7) 

Body size Height (cm) 137.5 (5.9) 153.5 (7.7) 159.5 (6.8) 165.9 (7.5) 164.9 (6.0) 163.2 (6.1) 168.6 (11.4) 

Mass (kg) 35.2 (8.2) 45.5 (10.8) 53.6 (12.8) 73.1 (17.3) 65.4 (12.0) 68.1 (11.8) 107.5 (14.5) 

Body mass 

index (BMI) 

(kg.m-2) 

 

18.5 (3.3) 19.2(3.6) 20.9 (4.3) 26.5 (5.9) 24.9 (4.2) 25.6 (4.4) 31.4 (5.4) 

 **zBMI 

 

0.63 (1.19) 0.08 (1.30) 0.34 (1.33)     

Accelerometer  
 

Brand ActiGraph GT9X 

 

GENEActiv 

 

GENEActiv 

 

ActiGraph GT9X 

 

Axivity 

 

Axivity 

 

GENEActiv 

 

 Wrist 

 

Non-dominant Non-dominant Non-dominant Non-dominant Dominant Dominant Non-dominant 

*Physical 

activity 

Average 

acceleration 

(mg) 

45.8 (13.1) 37.8 (9.0) 34.3 (7.9) 26.9 (7.7) *30.6 (8.5) *27.1 (7.0) 22.0 (7.3) 

†Intensity 

gradient 

-1.96 (0.14) -2.19 (0.15) -2.28 (0.17) -2.55 (0.22) -2.66 (0.16) -2.74 (0.16) -2.74 (0.20) 

‡M60ACC (mg) 216.9 (71.5) 180.4 (42.9) 166.7 (37.7) 129.1 (37.9) *158.3 (47.7) *139.1 (34.1) 103.9 (36.3) 

‡M30ACC (mg) 363.9 (135.5) 260.6 (75.8) 233.0 (63.80 188.1 (95.6) *226.4 (85.9) *191.7(56.2) 136.9 (50.5) 

‡M2ACC (mg) 1545.1 (518.8) 954.2 (323.7) 771.9 (301.5) 426.5 (216.2) *522.2 (228.9) *503.8 (160.3) 305.0 (115.0) 

Values are mean (standard deviation) for continuous variables and % for categorical variables. 

* Reduced by 10% as acceleration measured at the dominant wrist is approximately 10% higher than measured at the non-dominant (26). 

** zBMI: BMI expressed in z-scores for sex and age according to reference curves for the UK (29). 

†Measure of the intensity distribution of the 24 h activity profile, see Rowlands et al. (25). A more negative gradient reflects a steeper drop with little time accumulated at 

mid-range and higher intensities, while a less negative gradient reflects a shallower drop with more time spread across the intensity range. 

‡M60ACC, M30ACC, M2ACC: acceleration above which a person’s most active minutes (X min, MXACC) are accumulated. 
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Figure 1: Percentiles for the magnitude of acceleration above which the females’ most active (a) 60, (b) 30 

and (c) 2 minutes are accumulated: M60ACC; M30ACC and M2ACC (mg). Black dashes /dashed lines represent: 

(a) M60ACC and (b) M30ACC at the intensity of a brisk walk (lower dashed line) or fast walk (upper dashed 

line); (c) M2ACC at the bone health threshold: medium running for pre-menopausal women and slow running 

for post-menopausal women16. The stick figures indicate representative activities associated with the 

acceleration for: (a) slow walk and brisk walk; (b) slow walk, brisk walk and slow run; c) brisk walk and slow 

run. 
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Figure 2: Percentiles for the magnitude of acceleration above which the males’ most active (a) 60, (b) 30 and 

(c) 2 minutes are accumulated: M60ACC; M30ACC and M2ACC (mg). Black dashes /dashed lines represent: (a) 

M60ACC and (b) M30ACC at the intensity of a brisk walk (lower dashes / dashed line) or fast walk (upper dashes 

/ dashed line). The stick figures indicate representative activities associated with the acceleration for: (a) slow 

walk and brisk walk; (b) slow walk, brisk walk and slow run; c) brisk walk and slow run. 
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Table 1: Proportion of each sample meeting MVPA guidelines operationalised as 60 min per day (children) or 

30 min per day (adults) of brisk walking or fast walking 

  
Brisk walk 

 
Fast walk 

 

  
Female Male Female Male 

Children 60 min >200 mg >200 mg >300 mg >300 mg 

10 y olds % meeting guideline 39% 68% 2% 21% 
 

NO: M60ACC  164.9 (21.3) 157.8 (27) 192.0 (42.2) 212.1 (53.1) 
 

YES: M60ACC 242.3 (28.4) 289.1 (74.4) 302.2 (1.64) 377.2 (70.2) 
      

 11-12 y olds % meeting guideline 26% 
 

2% 
 

 
NO: M60ACC  161.4 (23.3) 

 
177.6 (36.8) 

 

 
YES: M60ACC 235.6 (39.0) 

 
355.2 (43.30 

 

      

13-14 y olds % meeting guideline 17% 
 

1% 
 

 
NO: M60ACC  154.6 (25.1) 

 
164.4 (25.6) 

 

 
YES: M60ACC 228.1 (30.1) 

 
320.1 (10.5) 

 

Adults 30 min >170 mg >170 mg >250 mg >250 mg 

Office 

workers 

% Meeting guideline 45% 55% 11% 14% 

NO: M30ACC  141.7 (18.2) 147.7 (16.0) 161.4 (30.9) 167.5 (27.4) 

YES: M30ACC 246.8 (133.6) 212.8 (46.0) 427.9 (188.5) 282.8 (19.5) 
      

Pre-

menopausal 

women 

% meeting guideline 81% 
 

25% 
 

NO: M30ACC  150.8 (15.1) 
 

191.2 (31.3) 
 

YES: M30ACC 244.5 (86.0) 
 

334.5 (107.6) 
 

      

Post-

menopausal 

women 

% meeting guideline 63% 
 

11% 
 

NO: M30ACC  145.6 (17.6) 
 

177.3 (33.5) 
 

YES: M30ACC 219.0 (53.4) 
 

303.4 (69.9) 
 

      

Adults with 

type 2 

diabetes 

% meeting guideline 15% 16% 2% 3% 

NO: M30ACC  118.7 (23.9) 123.9 (26.5) 129.2 (35.1) 132.8 (33.9) 

YES: M30ACC 203.8 (28.4) 221.2 (89.1) 268.8 (15.4) 354.5 (0) 
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Discussion 

Given the rising use of accelerometers, including their use in large-scale surveyse.g.1-5, it is important to have 

simple to derive and easy to interpret accelerometer variables that has potential for use to compare physical 

activity across datasets/populations/countries. This would facilitate global surveillance and the development 

of evidence-based physical activity guidelines directly from accelerometer data. As data accumulate, physical 

activity of groups and individuals can be interpreted relative to age- and sex- specific norms and/or relative to 

values associated with health markers. While the values themselves are not immediately intuitive, this is also 

true of many metrics that are commonly used by researchers, clinicians and the public28. For example, risk 

thresholds for health markers such as body mass index, blood pressure, and cholesterol are routinely used and 

widely understood. As outlined by Welk et al.28, a range of instruments are used to obtain measures of blood 

pressure, but the use of a standardised metric makes it possible for researchers, clinicians and patients to 

discuss a common number. This would also be possible with widespread use of standardised population-

independent accelerometer measures of physical activity.  

In this paper, we demonstrate how presenting percentiles for population-independent metrics such as the 

M60ACC and M30ACC can be used now to estimate adherence to current MVPA guidelines. The numerous 

problems associated with applying cut-points to accelerometer data8-10 are avoided as the data and results 

presented are data-driven. Comparison to any representative activity, cut-point or, more importantly, any 

future health-related accelerometer threshold is possible and can be carried out post-hoc with no access to the 

original data needed. Further, demographic-specific translations can be carried out post-hoc to facilitate 

public-health friendly recommendations using accelerations representative of typical activities.  Crucially, 

population-specific translation is only for interpretation and has no bearing on analyses or results presented. 

This means the metrics and results retain their population-independence9.  

Further, comparison or translation is not tied to an exact acceleration value for a representative activity or cut-

point. For example, if a child accumulates 60 min of activity in the acceleration range of 185 – 199 mg, their 

M60ACC will be 185 mg. Another child may accumulate 60 min with accelerations just exceeding 200 mg. 

With the cut-point method, these similar activity levels look very disparate; zero min of MVPA and 60 min of 

MVPA, respectively. Their M60ACC, on the other hand reflects the smaller discrepancy in activity level that is 
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evident; 185 mg and 200 mg. At a group level, presenting percentiles for the MXACC values as illustrated 

herein (Figures 1 and 2), displays the proportion of a sample achieving X min at any given intensity. In 

contrast, once cut-points have been applied, any activity accumulated just below a given cut-point will always 

be disregarded, irrespective of how the data are presented. 

By decreasing the number of minutes of interest the metric can be used to focus on aspects of health that 

benefit from short, high-intensity bursts of activity, e.g. bone health16, 29. Accelerometer-derived physical 

activity intensity guides for bone health have recently been proposed for pre- and post-menopausal women 

using data from a UK Biobank16; these metrics could be used to further test this recommendation and to derive 

guidelines from accelerometer data specific to bone health in men and children. 

To aid translation, we expressed the acceleration magnitudes in relation to representative activities, e.g. brisk 

walk, fast walk and run. Currently there are limited data from which to draw these estimates. To enhance 

translation of these metrics there is a need to generate more data showing the acceleration ranges associated 

with representative activities across a wide range of demographics. Note, this is only for translation and is not 

necessary for generation of the accelerometer metrics from data, or for developing the evidence base 

necessary to derive physical activity guidelines directly from accelerometer data. 

The acceleration magnitudes tended to be higher for the pre-menopausal women who wore the Axivity on 

their dominant wrist than for the slightly younger office workers who wore the ActiGraph on their non-

dominant wrist. While this may be due to the sedentary nature of the office job, it could reflect the non-

representative nature of the samples, indicate that the -10% reduction in acceleration for dominant wrist 

placement24 was insufficient, and/or that there were differences between the ActiGraph and the Axivity. While 

raw data from the GENEActiv and Axivity accelerometers compare well24, ‘raw’ data from the ActiGraph 

GT9X is passed through a filter that suppresses higher intensity accelerations. As the filter suppresses higher 

accelerations this will be most evident in active populations and for the shorter MXACC durations and will limit 

the comparability of data collected with the ActiGraph to data collected with the Axivity or GENEActiv. 

Further, the accelerometer sampling frequency and epoch differed between some studies. As the metrics are 

sampling frequency independent this should not impact on the outcomes generated with GGIR, but this needs 

to be confirmed empirically. It is also possible that the use of 1 s and 5 s epochs may have impacted on the 
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MXACC outcomes, however, in our previous study data summarised in 1 s and 5 s epochs were comparable30. 

Crucially, as with any accelerometer outcome, the metrics will differ according to where the monitor is worn, 

e.g. output collected at the wrist is not comparable to data collected at the hip. Any norms generated for these, 

or any other, metrics will have to be placement-specific. It is important to consider all of the above when 

attempting to compare these metrics between studies. 

Conclusion 

Cut-point approaches to analysing accelerometer data are not appropriate for assessing the prevalence of 

meeting guidelines globally11. Metrics reflecting the acceleration above which the most active minutes are 

accumulated are a standardised, easy to interpret, and population-independent method that has potential for 

assessing prevalence of physical activity and comparing activity between demographics and/or studies. These 

simple to derive variables facilitate global surveillance and dose-response studies. Furthermore, translating the 

metrics in terms of representative activities (e.g. brisk walking) can provide a public-health friendly 

interpretation of the results9. Currently, guidelines are largely derived from self-report data10. As 

accelerometer and corresponding health data accumulate it will be possible to derive evidence-based physical 

activity guidelines directly from accelerometer data.  
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