704 research outputs found

    Singular potentials and annihilation

    Get PDF
    We discuss the regularization of attractive singular potentials αs/rs-\alpha _{s}/r^{s}, s2s\geq 2 by infinitesimal imaginary addition to interaction constant αs=αs±i0\alpha_{s}=\alpha_{s}\pm i0. Such a procedure enables unique definition of scattering observables and is equal to an absorption (creation) of particles in the origin. It is shown, that suggested regularization is an analytical continuation of the scattering amplitudes of repulsive singular potential in interaction constant αs\alpha_{s}. The nearthreshold properties of regularized in a mentioned way singular potential are examined. We obtain expressions for the scattering lengths, which turn to be complex even for infinitesimal imaginary part of interaction constant. The problem of perturbation of nearthreshold states of regular potential by a singular one is treated, the expressions for level shifts and widths are obtained. We show, that the physical sense of suggested regularization is that the scattering observables are insensitive to any details of the short range modification of singular potential, if there exists sufficiently strong inelastic short range interaction. In this case the scattering observables are determined by solutions of Schrodinger equation with regularized potential (αs±i0)/rs-(\alpha_{s}\pm i0)/r^{s}. We point out that the developed formalism can be applied for the description of systems with short range annihilation, in particular low energy nucleon-antinucleon scattering.Comment: 10 page

    Parity-violating neutron spin rotation in hydrogen and deuterium

    Full text link
    We calculate the (parity-violating) spin rotation angle of a polarized neutron beam through hydrogen and deuterium targets, using pionless effective field theory up to next-to-leading order. Our result is part of a program to obtain the five leading independent low-energy parameters that characterize hadronic parity-violation from few-body observables in one systematic and consistent framework. The two spin-rotation angles provide independent constraints on these parameters. Using naive dimensional analysis to estimate the typical size of the couplings, we expect the signal for standard target densities to be 10^-7 to 10^-6 rad/m for both hydrogen and deuterium targets. We find no indication that the nd observable is enhanced compared to the np one. All results are properly renormalized. An estimate of the numerical and systematic uncertainties of our calculations indicates excellent convergence. An appendix contains the relevant partial-wave projectors of the three-nucleon system.Comment: 44 pages, 17 figures; minor corrections; to be published in EPJ

    Renormalized Path Integral for the Two-Dimensional Delta-Function Interaction

    Get PDF
    A path-integral approach for delta-function potentials is presented. Particular attention is paid to the two-dimensional case, which illustrates the realization of a quantum anomaly for a scale invariant problem in quantum mechanics. Our treatment is based on an infinite summation of perturbation theory that captures the nonperturbative nature of the delta-function bound state. The well-known singular character of the two-dimensional delta-function potential is dealt with by considering the renormalized path integral resulting from a variety of schemes: dimensional, momentum-cutoff, and real-space regularization. Moreover, compatibility of the bound-state and scattering sectors is shown.Comment: 26 pages. The paper was significantly expanded and numerous equations were added for the sake of clarity; the main results and conclusions are unchange

    Acute cocoa flavanol supplementation improves muscle macro- and microvascular but not anabolic responses to amino acids in older men

    Get PDF
    The anabolic effects of nutrition on skeletal muscle may depend on adequate skeletal muscle perfusion, which is impaired in older people. Cocoa flavanols have been shown to improve flow-mediated dilation, an established measure of endothelial function. However, their effect on muscle microvascular blood flow is currently unknown. Therefore, the objective of this study was to explore links between the consumption of cocoa flavanols, muscle microvascular blood flow and muscle protein synthesis (MPS) in response to nutrition in older men. To achieve this objective leg blood flow (LBF), muscle microvascular blood volume (MBV) and MPS were measured under postabsorptive and postprandial (I.V glamin, dextrose to sustain glucose ~7.5 mmol·l-1) conditions in 20 older men. Ten of these men were studied with no cocoa flavanol intervention and a further 10 were studied with the addition of 350 mg of cocoa flavanols at the same time as nutrition began. Leg [femoral artery] blood flow was measured by Doppler ultrasound, muscle MBV by contrast-enhanced ultrasound (CEUS) using DefinityTM perflutren contrast agent and MPS using [1, 2-13C2] leucine tracer techniques. Our results show that although older individuals do not show an increase in LBF or MBV in response to feeding, these absent responses are apparent when cocoa flavanols are given acutely with nutrition. However this restoration in vascular responsiveness is not associated with improved MPS responses to nutrition. We conclude that acute cocoa flavanol supplementation improves muscle macro- and microvascular responses to nutrition, independently of modifying muscle protein anabolism

    Strangeness nuclear physics: a critical review on selected topics

    Get PDF
    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of Λ\Lambda--Hypernuclei, the Kˉ\bar K nuclear interaction and the possible existence of Kˉ\bar K bound states in nuclei. Perspectives for future studies on these issues are also outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical Journal

    Lorentz breaking Effective Field Theory and observational tests

    Full text link
    Analogue models of gravity have provided an experimentally realizable test field for our ideas on quantum field theory in curved spacetimes but they have also inspired the investigation of possible departures from exact Lorentz invariance at microscopic scales. In this role they have joined, and sometime anticipated, several quantum gravity models characterized by Lorentz breaking phenomenology. A crucial difference between these speculations and other ones associated to quantum gravity scenarios, is the possibility to carry out observational and experimental tests which have nowadays led to a broad range of constraints on departures from Lorentz invariance. We shall review here the effective field theory approach to Lorentz breaking in the matter sector, present the constraints provided by the available observations and finally discuss the implications of the persisting uncertainty on the composition of the ultra high energy cosmic rays for the constraints on the higher order, analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references adde

    Measuring gas emissions from livestock buildings: A review on uncertainty analysis and error sources

    Full text link
    Measuring gaseous and particulate emissions from livestock houses has been the subject of intensive research over the past two decades. Currently, there is general agreement regarding appropriate methods to measure emissions from mechanically ventilated buildings. However, measuring emissions from naturally ventilated buildings remains an elusive target primarily because there is no reference method for measuring building ventilation rate. Ventilation rates and thus building emissions estimates for naturally ventilated buildings are likely to contain greater errors compared with those from mechanically ventilated buildings. This work reviews the origin and magnitude of errors associated with emissions from naturally ventilated buildings as compared to those typically found in mechanical ventilation. Firstly, some general concepts of error analysis are detailed. Then, typical errors found in the literature for each measurement technique are reviewed, and potential sources of relevant systematic and random errors are identified. The emission standard uncertainty in mechanical ventilation is at best 10% or more of the measured value, whereas in natural ventilation it may be considerably higher and there may also be significant unquantifiable biases. A reference method is necessary to obtain accurate emissions estimates, and for naturally ventilated structures this suggests the need for a new means of ventilation measurement. The results obtained from the analysis of information in this review will be helpful to establish research priorities, and to optimize research efforts in terms of quality of emission measurements. (C) 2012 IAgrE. Published by Elsevier Ltd. All rights reserved.Calvet Sanz, S.; Gates, RS.; Zhang, G.; Estellés, F.; Ogink, NWM.; Pedersen, S.; Berckmans, D. (2013). Measuring gas emissions from livestock buildings: A review on uncertainty analysis and error sources. Biosystems Engineering. 116:221-231. doi:10.1016/j.biosystemseng.2012.11.004S22123111

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
    corecore